![山东省临沂市蒙阴县2024年八年级数学第二学期期末学业质量监测试题含解析_第1页](http://file4.renrendoc.com/view12/M09/2F/1E/wKhkGWYatVCALhAgAAIPS5E3-BU144.jpg)
![山东省临沂市蒙阴县2024年八年级数学第二学期期末学业质量监测试题含解析_第2页](http://file4.renrendoc.com/view12/M09/2F/1E/wKhkGWYatVCALhAgAAIPS5E3-BU1442.jpg)
![山东省临沂市蒙阴县2024年八年级数学第二学期期末学业质量监测试题含解析_第3页](http://file4.renrendoc.com/view12/M09/2F/1E/wKhkGWYatVCALhAgAAIPS5E3-BU1443.jpg)
![山东省临沂市蒙阴县2024年八年级数学第二学期期末学业质量监测试题含解析_第4页](http://file4.renrendoc.com/view12/M09/2F/1E/wKhkGWYatVCALhAgAAIPS5E3-BU1444.jpg)
![山东省临沂市蒙阴县2024年八年级数学第二学期期末学业质量监测试题含解析_第5页](http://file4.renrendoc.com/view12/M09/2F/1E/wKhkGWYatVCALhAgAAIPS5E3-BU1445.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省临沂市蒙阴县2024年八年级数学第二学期期末学业质量监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.将正方形ABCD与等腰直角三角形EFG如图摆放,若点M、N刚好是AD的三等分点,下列结论正确的是()①△AMH≌△NME;②;③GH⊥EF;④S△EMN:S△EFG=1:16A.①②③④ B.①②③ C.①③④ D.①②④2.下列调查中,不适宜用普查的是()A.了解全班同学每周体育锻炼的时间; B.了解全市中小学生每天的零花钱;C.学校招聘教师,对应聘人员面试; D.旅客上飞机前的安检.3.如图,矩形ABCD边AD沿折痕AE折叠,使点D落在BC上的F处,已知AB=6,△ABF的面积是24,则FC等于()A.1 B.2 C.3 D.44.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知,,,则的度数是()A. B. C. D.5.如图,边长为a,b的矩形的周长为10,面积为6,则a2b+ab2的值为()A.60 B.16 C.30 D.116.如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点在直线上一点,则点B与其对应点B′间的距离为A. B.3 C.4 D.57.如图,已知Rt△ABC中,∠ABC=90°,分别以AB、BC、AC为直径作半圆,面积分别记S1,S2,S3,若S1=4,S2=9,则S3的值为()A.13 B.5 C.11 D.38.如图,一个矩形纸片,剪去部分后得到一个三角形,则图中∠1+∠2的度数是()A.120° B.90° C.60° D.30°9.如图,正方形中,为上一点,,交的延长线于点.若,,则的长为()A. B. C. D.10.点(﹣2,﹣1)在平面直角坐标系中所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.下列图案中,是中心对称图形的是()A. B.
C. D.12.如图,在△ABC中,D,E,F分别是AB,BC,AC边的中点.如果添加一个条件,使四边形ADEF是菱形,则添加的条件为()A.AB=AC B.AC=BC C.∠A=90° D.∠A=60°二、填空题(每题4分,共24分)13.若等腰三角形的顶角与一个底角度数的比值等于,该等腰三角形的顶角为_________.14.已知三角形两边长分别为2,3,那么第三边的长可以是___________.15.若ab=1316.当k取_____时,100x2﹣kxy+4y2是一个完全平方式.17.如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,先将它绕原点O旋转180∘到乙位置,再将它向下平移2个单位长到丙位置,则小花顶点A在丙位置中的对应点A'的坐标为______18.如图,矩形ABCD中,AB=16cm,BC=8cm,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为______.三、解答题(共78分)19.(8分)如图所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)若AD=5,BD=12,求DE的长.20.(8分)如图,在四边形OABC中,OA∥BC,∠OAB=90°,O为原点,点C的坐标为(2,8),点A的坐标为(26,0),点D从点B出发,以每秒1个单位长度的速度沿BC向点C运动,点E同时从点O出发,以每秒3个单位长度的速度沿折线OAB运动,当点E达到点B时,点D也停止运动,从运动开始,设D(E)点运动的时间为t秒.(1)当t为何值时,四边形ABDE是矩形;(2)当t为何值时,DE=CO?(3)连接AD,记△ADE的面积为S,求S与t的函数关系式.21.(8分)已知,,满足等式.(1)求、、的值;(2)判断以、、为边能否构成三角形?若能构成三角形,此三角形是什么形状的三角形?若不能,请说明理由;22.(10分)如图,矩形ABCD中,AB=9,AD=4.E为CD边上一点,CE=6.点P从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE.设点P运动的时间为t秒.(1)求AE的长;(2)当t为何值时,△PAE为直角三角形;(3)是否存在这样的t,使EA恰好平分∠PED,若存在,求出t的值;若不存在,请说明理由.23.(10分)在平面直角坐标系中,直线:与坐标轴交于A,B两点,直线:与坐标轴交于点C,D.求点A,B的坐标;如图,当时,直线,与相交于点E,求两条直线与x轴围成的的面积;若直线,与x轴不能围成三角形,点在直线:上,且点P在第一象限.求k的值;若,求m的取值范围.24.(10分)在读书月活动中,某校号召全体师生积极捐书,为了解所捐书籍的种类,图书管理员对部分书籍进行了抽样调查,根据调查数据绘制了如下不完整的统计图表.请你根据统计图表所提供的信息回答下面问题:某校师生捐书种类情况统计表种类
频数
百分比
A.科普类
12
n
B.文学类
14
35%
C.艺术类
m
20%
D.其它类
6
15%
(1)统计表中的m=,n=;(2)补全条形统计图;(3)本次活动师生共捐书2000本,请估计有多少本科普类图书?25.(12分)某公司欲招聘一名工作人员,对甲、乙两位应聘者进行面试和笔试,他们的成绩(百分制)如下表所示:应聘者面试笔试甲8790乙9182若公司分别赋予面试成绩和笔试成绩6和4的权,计算甲、乙两人各自的平均成绩,谁将被录取?26.先化简,再求值:÷(a-1+),其中a=.
参考答案一、选择题(每题4分,共48分)1、A【解析】
利用三角形全等和根据题目设未知数,列等式解答即可.【详解】解:设AM=x,∵点M、N刚好是AD的三等分点,∴AM=MN=ND=x,则AD=AB=BC=3x,∵△EFG是等腰直角三角形,∴∠E=∠F=45°,∠EGF=90°,∵四边形ABCD是正方形,∴∠A=∠ABC=∠BGN=∠ABF=90°,∴四边形ABGN是矩形,∴∠AHM=∠BHF=∠AMH=∠NME=45°,∴△AMH≌△NMH(ASA),故①正确;∵∠AHM=∠AMH=45°,∴AH=AM=x,则BH=AB﹣AH=2x,又Rt△BHF中∠F=45°,∴BF=BH=2x,=,故②正确;∵四边形ABGN是矩形,∴BG=AN=AM+MN=2x,∴BF=BG=2x,∵AB⊥FG,∴△HFG是等腰三角形,∴∠FHB=∠GHB=45°,∴∠FHG=90°,即GH⊥EF,故③正确;∵∠EGF=90°、∠F=45°,∴EG=FG=BF+BG=4x,则S△EFG=•EG•FG=•4x•4x=8x2,又S△EMN=•EN•MN=•x•x=x2,∴S△EMN:S△EFG=1:16,故④正确;故选A.【点睛】本题主要考察三角形全等证明的综合运用,掌握相关性质是解题关键.2、B【解析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A、了解全班同学每周体育锻炼的时间,数量不大,宜用全面调查,故A选项错误;B、了解全市中小学生每天的零花钱,数量大,不宜用全面调查,故B选项正确;C、学校招聘教师,对应聘人员面试,必须全面调查,故C选项错误;D、旅客上飞机前的安检,必用全面调查,故D选项不正确.故选B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3、B【解析】
试题分析:由四边形ABCD是矩形与AB=6,△ABF的面积是14,易求得BF的长,然后由勾股定理,求得AF的长,根据折叠的性质,即可求得AD,BC的长,继而求得答案.解:∵四边形ABCD是矩形,∴∠B=90°,AD=BC,∵AB=6,∴S△ABF=AB•BF=×6×BF=14,∴BF=8,∴AF===10,由折叠的性质:AD=AF=10,∴BC=AD=10,∴FC=BC﹣BF=10﹣8=1.故选B.考点:翻折变换(折叠问题).4、B【解析】
延长交于,依据,,可得,再根据三角形外角性质,即可得到.【详解】解:如图,延长交于,,,,又,,故选:.【点睛】本题主要考查了平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.5、C【解析】
先把所给式子提公因式进行因式分解,整理为与所给周长和面积相关的式子,再代入求值即可.【详解】∵矩形的周长为10,∴a+b=5,∵矩形的面积为6,∴ab=6,
∴a2b+ab2=ab(a+b)=1.
故选:C.【点睛】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.6、C【解析】试题分析:如图,连接AA′、BB′,∵点A的坐标为(0,3),△OAB沿x轴向右平移后得到△O′A′B′,∴点A′的纵坐标是3。又∵点A的对应点在直线上一点,∴,解得x=4。∴点A′的坐标是(4,3)。∴AA′=4。∴根据平移的性质知BB′=AA′=4。故选C。7、A【解析】
由扇形的面积公式可知S1=•π•AC2,S2=•π•BC2,S3=•π•AB2,在Rt△ABC中,由勾股定理得AC2+BC2=AB2,即S1+S2=S3;【详解】解:∵S1=•π•AC2,S2=•π•BC2,S3=•π•AB2,在Rt△ABC中,由勾股定理得AC2+BC2=AB2,即S1+S2=S3;∵S1=4,S2=9,∴S3=1.故选A.【点睛】本题考查勾股定理的应用,难度适中,解题关键是对勾股定理的熟练掌握及灵活运用,记住S1+S2=S3.8、B【解析】
根据直角三角形两锐角互余解答.【详解】由题意得,剩下的三角形是直角三角形,所以,∠1+∠2=90°.故选:B.【点睛】此题考查直角三角形的性质,解题关键在于掌握其性质.9、D【解析】
先根据题意得出△ABM∽△MCG,故可得出CG的长,再求出DG的长,根据△MCG∽△EDG即可得出结论.【详解】四边形ABCD是正方形,AB=12,BM=5,.,,,,,,,,即,解得,,,,,,即,解得.故选D.【点睛】本题主要考查相似三角形的判定与性质,熟知相似三角形的对应边成比例是解答此题的关键.10、C【解析】
根据横纵坐标的符号可得相关象限.【详解】∵点的横纵坐标均为负数,∴点(-1,-2)所在的象限是第三象限,故选C.【点睛】本题考查了点的坐标,用到的知识点为:横纵坐标均为负数的点在第三象限.11、D【解析】
根据中心对称图形的定义逐一进行分析判断即可.【详解】A、不是中心对称图形,故不符合题意;B、不是中心对称图形,故不符合题意;C、不是中心对称图形,故不符合题意;D、是中心对称图形,故符合题意,故选D.【点睛】本题考查了中心对称图形的识别,熟练掌握中心对称图形的概念是解题的关键.12、A【解析】
由题意利用中位线性质和平行四边形判定四边形ADEF是平行四边形,再寻找条件使得相邻两边相等即可判断选项.【详解】解:∵在△ABC中,D,E,F分别是AB,BC,AC边的中点,∴DE和EF为中位线,EF//AB,DE//AC,∴四边形ADEF是平行四边形,当AB=AC,则有AD=AF,证得四边形ADEF是菱形,故AB=AC满足条件.故选:A.【点睛】本题考查菱形的性质与证明,熟练掌握中位线性质和平行四边形的判定是解题的关键.二、填空题(每题4分,共24分)13、360【解析】
根据等腰三角形的性质得出∠B=∠C,根据三角形内角和定理和已知得出5∠A=180°,求出即可.【详解】∵△ABC中,AB=AC,∴∠B=∠C,∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,∴∠A:∠B=1:2,即5∠A=180°,∴∠A=36°,故答案为:36°【点睛】此题考查等腰三角形的性质,三角形内角和定理,解题关键在于得到5∠A=180°14、2(答案不唯一).【解析】
根据三角形的三边关系可得3-2<第三边长<3+2,再解可得第三边的范围,然后可得答案.【详解】解:设第三边长为x,由题意得:3-2<x<3+2,解得:1<x<1.故答案为:2(答案不唯一).【点睛】此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边,三角形的两边差小于第三边.15、-2【解析】试题解析:∵a∴b=3a∴a+ba-b16、±40【解析】
利用完全平方公式判断即可确定出k的值.【详解】解:∵100x2-kxy+4y2是一个完全平方式,
∴k=±40,
故答案为:±40【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.17、(3,-1)【解析】根据图示可知A点坐标为(-3,-1),根据绕原点O旋转180°横纵坐标互为相反数∴旋转后得到的坐标为(3,1),根据平移“上加下减”原则,∴向下平移2个单位得到的坐标为(3,-1),18、1【解析】
因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,∴AF=AB-BF.【详解】解:易证△AFD′≌△CFB,
∴D′F=BF,
设D′F=x,则AF=16-x,
在Rt△AFD′中,(16-x)2=x2+82,
解之得:x=6,
∴AF=AB-FB=16-6=10,故答案为:1.【点睛】本题考查了翻折变换-折叠问题,勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.三、解答题(共78分)19、(1)证明见解析(2)13【解析】
(1)先根据同角的余角相等得到∠ACE=∠BCD,再结合等腰直角三角形的性质即可证得结论;(2)根据全等三角形的性质可得AE=BD,∠EAC=∠B=45°,即可证得△AED是直角三角形,再利用勾股定理即可求出DE的长.【详解】(1)∵△ACB和△ECD都是等腰直角三角形∴AC=BC,EC=DC,∠ACB=∠ECD=90°∵∠ACE=∠DCE-∠DCA,∠BCD=∠ACB-∠DCA∴∠ACE=∠BCD∴△ACE≌△BCD(SAS);(2)∵△ACB和△ECD都是等腰直角三角形∴∠BAC=∠B=45°∵△ACE≌△BCD∴AE=BD=12,∠EAC=∠B=45°∴∠EAD=∠EAC+∠BAC=90°,∴△EAD是直角三角形∴DE=【点睛】解答本题的关键是熟练掌握全等三角形的性质:全等三角形的对应边相等、对应角相等.20、(1)t=;(2)t=6s或7s;(3)当点E在OA上时,,当点E在OAAB上时,.【解析】
(1)根据矩形的判定定理列出关系式,计算即可;(2)根据平行四边形的判定定理和性质定理解答;(3)分点E在OA上和点E在AB上两种情况,根据三角形的面积公式计算即可.【详解】(1)∵点C的坐标为(2,8),点A的坐标为(26,0),∴OA=26,BC=24,AB=8,∵D(E)点运动的时间为t秒,∴BD=t,OE=3t,当BD=AE时,四边形ABDE是矩形,即t=26-3t,解得,t=;(2)当CD=OE时,四边形OEDC为平行四边形,DE=OC,此时CD=26-2-t=24-t,即24-t=3t,解得,t=6当四边形OCDE为等腰梯形时,DE=OC,即CD=26-2-t=24-t,OE=3t,∵OE=CD+4,∴3t=24-t+4,解得,t=7,则t为6s或7s时,DE=CO;(3)如图1,当点E在OA上时,AE=26-3t,则S=×AE×AB=×(26-3t)×8=-12t+104(),当点E在AB上时,AE=3t-26,BD=t,则S=×AE×DB=×(3t-26)×t=t2-13t().【点睛】本题考查的是矩形的判定、平行四边形的判定和性质以及函数解析式的确定,掌握相关的性质定理和判定定理、灵活运用分情况讨论思想是解题的关键.21、(1)a=,b=5,c=;(2)可以构成三角形;直角三角形;理由见解析【解析】
(1)根据二次根式的非负性解出a、b、c的值即可.(2)根据勾股定理逆定理判断即可.【详解】(1),由二次根式的非负性可知:a=,b=5,c=.(2)∵a+b>c>b-a,满足三边关系,∴a、b、c能构成三角形,∵a2=7,b2=25,c2=32,可得a2+b2=c2,∴三角形为直角三角形.【点睛】本题考查二次根式的非负性和勾股定理逆定理,关键在于熟练掌握相关性质.22、(1)5;(2)6或;(3)存在,t=,理由见解析【解析】
(1)在直角△ADE中,利用勾股定理进行解答;(2)需要分类讨论:AE为斜边和AP为斜边两种情况下的直角三角形;(3)假设存在.利用角平分线的性质,平行线的性质以及等量代换推知:∠PEA=∠EAP,则PE=PA,由此列出关于t的方程,通过解方程求得相应的t的值即可.【详解】解:(1)∵矩形ABCD中,AB=9,AD=4,∴CD=AB=9,∠D=90°,∴DE=9﹣6=3,∴AE==5;(2)①若∠EPA=90°,BP=CE=6,∴t=6;②若∠PEA=90°,如图,过点P作PH⊥PH⊥CD于H,∵四边形ABCD是矩形,∴∠B=∠C=90°,∴四边形BCHP是矩形,∴CH=BP=t,PH=BC=4,∴HE=CE-CH=6-t,在Rt△PHE中,PE2=HE2+PH2=(6-t)2+42,∵∠PEA=90°,在Rt△PEA中,根据勾股定理得,PE2+AE2=AP2,∴(6-t)2+42+52=(9-t)2,,解得t=.综上所述,当t=6或t=时,△PAE为直角三角形;(3)假设存在.∵EA平分∠PED,∴∠PEA=∠DEA.∵CD∥AB,∴∠DEA=∠EAP,∴∠PEA=∠EAP,∴PE=PA,∴,解得t=.∴满足条件的t存在,此时t=.【点睛】此题是四边形综合题,主要考查了矩形的判定和性质,勾股定理,解一元二次方程,用勾股定理建立方程是解本题的关键.23、(1)A(0,6)B(3,0)(2)8(3)①;②【解析】
(1)根据,令x=0,得到y=6;令y=0,得到x=3,即可解答;(2)当=2时,求出直线l2:与x轴交点D的坐标,从而求出DB的长,再把两直线的解析式组成方程组求出点E的坐标,根据三角形的面积公式求出△BDE的面积;(3)①若直线l1,l2与轴不能围成三角形,则直线l2与l1平行或直线l2经过点B,从而求出k的值;②根据k的值分别求出直线l2解析式,再根据点P(a,b)在直线l2上得到a与b的关系式,从而确定的取值范围.【详解】(1)∵,
∴令x=0,得到y=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 买方信贷融资合同意向性协议
- 个人汽车消费贷款合同细则
- 个人工程委托合同范本
- 中英文涉外公司劳动合同范本
- 临时隔断墙施工项目合同
- 个人投资入伙合同书范本
- 个人抵押债务合同样本简易版
- 个人股权转让合同样本:标准版
- 个人分红权益保障合同2025
- 专业技能人才租赁合同
- 2024年全国现场流行病学调查职业技能竞赛考试题库-上部分(600题)
- 2025年中国铁路设计集团有限公司招聘笔试参考题库含答案解析
- (一模)晋城市2025年高三年第一次模拟考试 物理试卷(含AB卷答案解析)
- 安徽省蚌埠市2025届高三上学期第一次教学质量检查考试(1月)数学试题(蚌埠一模)(含答案)
- 医院工程施工重难点分析及针对性措施
- 2025年春节安全专题培训(附2024年10起重特大事故案例)
- 2025年江苏太仓水务集团招聘笔试参考题库含答案解析
- 辽宁省沈阳名校2025届高三第一次模拟考试英语试卷含解析
- 智研咨询-2025年中国生鲜农产品行业市场全景调查、投资策略研究报告
- 员工赔偿金保密协议书(2篇)
- 圆锥曲线方程复习
评论
0/150
提交评论