贵州省兴仁市回龙镇回龙中学2024届数学八年级下册期末质量检测试题含解析_第1页
贵州省兴仁市回龙镇回龙中学2024届数学八年级下册期末质量检测试题含解析_第2页
贵州省兴仁市回龙镇回龙中学2024届数学八年级下册期末质量检测试题含解析_第3页
贵州省兴仁市回龙镇回龙中学2024届数学八年级下册期末质量检测试题含解析_第4页
贵州省兴仁市回龙镇回龙中学2024届数学八年级下册期末质量检测试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省兴仁市回龙镇回龙中学2024届数学八年级下册期末质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.下列各式中,一定是二次根式的是A. B. C. D.2.在今年的八年级期末考试中,我校(1)(2)(3)(4)班的平均分相同,方差分别为S12=20.8,S22=15.3,S32=17,S42=9.6,四个班期末成绩最稳定的是()A.(1)班 B.(2)班 C.(3)班 D.(4)班3.如图,菱形的面积为,正方形的面积为,则菱形的边长为()A. B. C. D.4.数据按从小到大排列为1,2,4,x,6,9,这组数据的中位数为5,那么这组数据的众数是()A.4 B.5 C.5.5 D.65.如图是一次函数y=kx+b的图象,则一次函数的解析式是()A.y=﹣4x+3 B.y=4x+3 C.y=x+3 D.y=﹣x+36.若直角三角形一条直角边长为6,斜边长为10,则斜边上的高是()A. B. C.5 D.107.如图,点A在双曲线y=4x上,点B在双曲线y=kxk≠0,AB//x轴,分别过点A、B向x轴作垂线,垂足分别为D、C.若矩形ABCDA.12 B.10 C.8 D.68.下列各式计算正确的是A. B.C. D.9.以和为根的一元二次方程是()A. B. C. D.10.下列关于变量x,y的关系,其中y不是x的函数的是()A. B.C. D.11.已知AB=8cm,小红在作线段AB的垂直平分线时操作如下:分别以A和B为圆心,5cm的长为半径画弧,两弧相交于C、D,则直线CD即为所求,根据此种作图方法所得到的四边形ADBC的面积是()A.12cm2 B.24cm2 C.36cm2 D.48cm212.下列多项式中不能用公式分解的是()A.a2+a+ B.-a2-b2-2ab C.-a2+25b2 D.-4-b2二、填空题(每题4分,共24分)13.已知a+=,则a-=__________14.若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为____.15.为参加2018年“宜宾市初中毕业生升学体育考试”,小聪同学每天进行立定跳远练习,并记录下其中7天的最好成绩(单位:m)分别为:2.21,2.12,2.1,2.39,2.1,2.40,2.1.这组数据的中位数和众数分别是_____.16.如图,以Rt△ABC的三边为边向外作正方形,其面积分别为S1、S2、S3,且S1=5,S2=6,则AB的长为_____.17.直线向下平移2个单位长度得到的直线是__________.18.已知▱ABCD的两条对角线相交于O,若∠ABC=120°,AB=BC=4,则OD=______.三、解答题(共78分)19.(8分)已知深港两地的高铁站深圳北、九龙西两站相距约40km.现高铁与地铁冋时从深圳北出发驶向九龙西,高铁的平均速度比地铁快70km/h,当高铁到达九龙西站时,地铁恰好到达距离深圳北站12km处的福田站,求高铁的平均速度.(不考虑换乘时间).20.(8分)如图,抛物线与直线相交于,两点,且抛物线经过点(1)求抛物线的解析式.(2)点是抛物线上的一个动点(不与点点重合),过点作直线轴于点,交直线于点.当时,求点坐标;(3)如图所示,设抛物线与轴交于点,在抛物线的第一象限内,是否存在一点,使得四边形的面积最大?若存在,请求出点的坐标;若不存在,说明理由.21.(8分)为了了解某校初中各年级学生每天的平均睡眠时间(单位:,精确到,抽样调查了部分学生,并用得到的数据绘制了下面两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)求出扇形统计图中百分数的值为_____,所抽查的学生人数为______.(2)求出平均睡眠时间为8小时的人数,并补全条形统计图.(3)求出这部分学生的平均睡眠时间的众数和平均数.(4)如果该校共有学生1800名,请你估计睡眠不足(少于8小时)的学生数.22.(10分)如图1,矩形的顶点、分别在轴与轴上,且点,点,点为矩形、两边上的一个点.(1)当点与重合时,求直线的函数解析式;(2)如图②,当在边上,将矩形沿着折叠,点对应点恰落在边上,求此时点的坐标.(3)是否存在使为等腰三角形?若存在,直接写出点的坐标;若不存在,请说明理由.23.(10分)如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.24.(10分)如图,点E是平行四边形ABCD的边BC的中点,连接AE并延长交DC的延长线于点F,连接AC、BF,∠AEC=2∠ABC;(1)求证:四边形ABFC是矩形;(2)在(1)的条件下,若△AFD是等边三角形,且边长为4,求四边形ABFC的面积。25.(12分)某商场统计了每个营业员在某月的销售额,绘制了如下的条形统计图以及不完整的扇形统计图:解答下列问题:(1)设营业员的月销售额为x(单位:万元),商场规定:当x<15时为不称职,当15≤x<20时,为基本称职,当20≤x<25为称职,当x≥25时为优秀.则扇形统计图中的a=_____,b=_____.(2)所有营业员月销售额的中位数和众数分别是多少?(3)为了调动营业员的积极性,决定制定一个月销售额奖励标准,凡到达或超过这个标准的营业员将受到奖励.如果要使得营业员的半数左右能获奖,奖励标准应定为多少万元?并简述其理由.26.如图1,在正方形和正方形中,边在边上,正方形绕点按逆时针方向旋转(1)如图2,当时,求证:;(2)在旋转的过程中,设的延长线交直线于点.①如果存在某一时刻使得,请求出此时的长;②若正方形绕点按逆时针方向旋转了,求旋转过程中,点运动的路径长.

参考答案一、选择题(每题4分,共48分)1、C【解析】

根据二次根式的定义进行判断.【详解】解:A.无意义,不是二次根式;

B.当时,是二次根式,此选项不符合题意;

C.是二次根式,符合题意;

D.不是二次根式,不符合题意;

故选C.【点睛】本题考查了二次根式的定义,关键是掌握把形如的式子叫做二次根式.2、D【解析】

直接根据方差的意义求解.【详解】∵S12=20.8,S22=15.3,S32=17,S42=9.6,∴S42<S22<S32<S12,则四个班期末成绩最稳定的是(4)班,故选D.【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.3、A【解析】

根据正方形的面积可用对角线进行计算解答即可.【详解】解:因为正方形AECF的面积为50cm2,

所以AC==10cm,

因为菱形ABCD的面积==120,

所以BD==24cm,

所以菱形的边长==13cm.

故选:A.【点睛】此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.4、D【解析】试题分析:因为数据的中位数是5,所以(4+x)÷2=5,得x=1,则这组数据的众数为1.故选D.考点:1.众数;2.中位数.5、C【解析】

将点(﹣4,0)、(0,1)坐标代入一次函数y=kx+b求出k、b即可.【详解】解:设一次函数解析式为:y=kx+b,根据题意,将点A(﹣4,0)和点B(0,1)代入得:,解得:,∴一次函数解析式为:y=x+1.故选C.【点睛】本题考查的是待定系数法求一次函数的解析式,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.6、B【解析】

根据勾股定理求出直角三角形另一条直角边长,根据三角形面积公式计算即可.【详解】解:设斜边上的高为h,由勾股定理得,直角三角形另一条直角边长==8,则,解得,h=故选B.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.7、A【解析】

首先得出矩形EODA的面积为:4,利用矩形ABCD的面积是8,则矩形EOCB的面积为:4+8=1,再利用xy=k求出即可.【详解】过点A作AE⊥y轴于点E,∵点A在双曲线y=4∴矩形EODA的面积为:4,∵矩形ABCD的面积是8,∴矩形EOCB的面积为:4+8=1,则k的值为:xy=k=1.故选A.【点睛】此题主要考查了反比例函数关系k的几何意义,得出矩形EOCB的面积是解题关键.8、D【解析】

根据二次根式的运算法则即可求解.【详解】A.不能计算,故错误;B.不能计算,故错误;C.,故错误;D.,正确故选D.【点睛】此题主要考查二次根式的运算,解题的关键是熟知二次根式的运算法则.9、B【解析】

根据已知两根确定出所求方程即可.【详解】以2和4为根的一元二次方程是x2﹣6x+8=0,故选B.【点睛】此题考查了根与系数的关系,弄清根与系数的关系是解本题的关键.10、C【解析】

根据函数的定义,设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量,进而判断得出即可.【详解】解:选项ABD中,对于x的每一个确定的值,y都有唯一的值与其对应,故y是x的函数;只有选项C中,x取1个值,y有2个值与其对应,故y不是x的函数.故选C.【点睛】此题主要考查了函数的定义,正确掌握函数定义是解题关键.11、B【解析】

根据垂直平分线的画法得出四边形ADBC四边的关系进而得出四边形一定是菱形,由菱形的性质以及勾股定理求出对角线CD的长,代入菱形面积公式即可求解.【详解】如图:∵分别以A和B为圆心,5cm的长为半径画弧,两弧相交于C、D,∴AC=AD=BD=BC=5cm,∴四边形ADBC是菱形,∴AB⊥CD,AO=OB=4cm,CD=2OC,∴由勾股定理得:OC=3cm,∴CD=6cm,∴四边形ADBC的面积=AB•CD=×8×6=24cm2,故选:B.【点睛】此题主要考查了线段垂直平分线的性质以及菱形的判定和性质,得出四边形四边关系是解决问题的关键.12、D【解析】分析:各项利用平方差公式及完全平方公式判断即可.详解:A.原式=(a+)2,不合题意;B.原式=-(a+b)2,不合题意;C.原式=(5b+a)(5b﹣a),不合题意;D.原式不能分解,符合题意.故选D.点睛:本题考查了因式分解﹣运用公式法,熟练掌握公式是解答本题的关键.二、填空题(每题4分,共24分)13、【解析】

通过完全平方公式即可解答.【详解】解:已知a+=,则==10,则==6,故a-=.【点睛】本题考查完全平方公式的运用,熟悉掌握是解题关键.14、1【解析】

由点A的坐标利用待定系数法即可求出正比例函数的解析式,再利用一次函数图象上点的坐标特征可求出m的值,此题得解.【详解】设正比例函数的解析式为y=kx(k≠0),∵该正比例函数图象经过点A(3,﹣6),∴﹣6=3k,解得:k=﹣1,∴正比例函数的解析式为y=﹣1x.∵点B(m,﹣4)在正比例函数y=﹣1x的图象上,∴﹣4=﹣1m,解得:m=1.故答案为:1.【点睛】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.15、2.40,2.1.【解析】∵把7天的成绩从小到大排列为:2.12,2.21,2.39,2.40,2.1,2.1,2.1.∴它们的中位数为2.40,众数为2.1.故答案为2.40,2.1.点睛:本题考查了中位数和众数的求法,如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数.一组数据中出现次数最多的数是这组数据的众数.16、【解析】

根据勾股定理得出S2+S1=S3,求出S3,即可求出AB.【详解】解:∵由勾股定理得:AC2+BC2=AB2,∴S2+S1=S3,∵S1=5,S2=6,∴S3=11,∴AB=,故答案为:.【点睛】本题考查了勾股定理和正方形的性质,能求出S3的值是解此题的关键.17、【解析】

根据一次函数图象几何变换的规律得到直线y=1x向下平移1个单位得到的函数解析式为y=1x-1.【详解】解:直线y=1x向下平移1个单位得到的函数解析式为y=1x-1故答案为:y=1x-1【点睛】本题考查了一次函数图象几何变换规律:一次函数y=kx(k≠0)的图象为直线,直线平移时k值不变,当直线向上平移m(m为正数)个单位,则平移后直线的解析式为y=kx+m.当直线向下平移m(m为正数)个单位,则平移后直线的解析式为y=kx-m.18、1【解析】

根据菱形的判定可得▱ABCD是菱形,再根据性质求得∠BCO的度数,可求OB,进一步求得OD的长.【详解】解:∵四边形ABCD是平行四边形,AB=BC=4,∴▱ABCD是菱形,∵∠ABC=110°,∴∠BCO=30°,∠BOC=90°,∴OB==1,∴OD=1.故答案为:1.【点睛】本题主要考查了平行四边形的性质、菱形的性质、30度角所对的直角边等于斜边的一半,解决问题的关键是掌握:菱形的对角线平分每一组对角.三、解答题(共78分)19、高铁的平均速度为100km/h【解析】

设设高铁的平均速度为xkm/h,根据时间=路程÷速度,即可得出关于x的分式方程,解之经检验即可得出结论.【详解】设高铁的平均速度为xkm/h,依题意得解得x=100,经检验,x=100是原方程的解,答:高铁的平均速度为100km/h.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.20、(1);(2)点坐标为(2,9)或(6,-7);(3)存在点Q()使得四边形OFQC的面积最大,见解析.【解析】

(1)先由点在直线上求出点的坐标,再利用待定系数法求解可得;(2)可设出点坐标,则可表示出、的坐标,从而可表示出和的长,由条件可知到关于点坐标的方程,则可求得点坐标;(3)作轴于点,设,,知,,,根据四边形的面积建立关于的函数,再利用二次函数的性质求解可得.【详解】解:(1)点在直线上,,,把、、三点坐标代入抛物线解析式可得,解得,抛物线解析式为;(2)设,则,,则,,,,当时,解得或,但当时,与重合不合题意,舍去,;当时,解得或,但当时,与重合不合题意,舍去,;综上可知点坐标为或;(3)存在这样的点,使得四边形的面积最大.如图,过点作轴于点,设,,则,,,四边形的面积,当时,四边形的面积取得最大值,最大值为,此时点的坐标为,.【点睛】本题是二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及利用割补法列出四边形面积的函数关系式.21、(1)45%,60人;(2)18人,条形统计图见解析;(3)众数7,平均数7.2;(4)1170人.【解析】

(1)用1减去每天的平均睡眠时间为6小时,8小时,9小时所占的百分比即可求出a的值,用每天的平均睡眠时间为6小时的人数除以其所占的百分比即可得到总人数;(2)用总人数乘以每天的平均睡眠时间为8小时所占的百分比即可求出睡眠时间为8小时的人数,用总人数乘以a的值即可求出睡眠时间为7小时的人数,然后即可补全条形统计图;(3)根据众数和平均数的定义计算即可;(4)先计算出睡眠时间少于8小时的人所占的百分比,然后用总人数1800乘以这个百分比即可得出答案.【详解】(1),所抽查的学生人数为(人);(2)平均睡眠时间为8小时的人数为(人),平均睡眠时间为7小时的人数为(人),条形统计图如下:(3)由扇形统计图可知,睡眠时间为7小时的人数最多,所以这部分学生的平均睡眠时间的众数为7,平均数为;(4)(人)【点睛】本题主要考查条形统计图和扇形统计图,掌握条形统计图和扇形统计图以及众数,平均数的求法是解题的关键.22、(1)y=x+2;(2)(,10);(3)存在,P坐标为(6,6)或(6,2+2)或(6,10-2).【解析】

(1)设直线DP解析式为y=kx+b,将D与C坐标代入求出k与b的值,即可确定出解析式;

(2)当点B的对应点B′恰好落在AC边上时,根据勾股定理列方程即可求出此时P坐标;

(3)存在,分别以BD,DP,BP为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P坐标即可.【详解】解:(1)∵C(6,10),D(0,2),

设此时直线DP解析式为y=kx+b,

把D(0,2),C(6,10)分别代入,得

解得

则此时直线DP解析式为y=x+2;

(2)设P(m,10),则PB=PB′=m,如图2,

∵OB′=OB=10,OA=6,

∴AB′==8,

∴B′C=10-8=2,

∵PC=6-m,

∴m2=22+(6-m)2,解得m=

则此时点P的坐标是(,10);

(3)存在,理由为:

若△BDP为等腰三角形,分三种情况考虑:如图3,

①当BD=BP1=OB-OD=10-2=8,

在Rt△BCP1中,BP1=8,BC=6,

根据勾股定理得:CP1=,

∴AP1=10-2,即P1(6,10-2);

②当BP2=DP2时,此时P2(6,6);

③当DB=DP3=8时,

在Rt△DEP3中,DE=6,

根据勾股定理得:P3E=,

∴AP3=AE+EP3=2+2,即P3(6,2+2),

综上,满足题意的P坐标为(6,6)或(6,2+2)或(6,10-2).【点睛】此题属于一次函数综合题,待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,熟练掌握待定系数法是解题的关键.23、(1)直线AB的解析式为y=1x﹣1,(1)点C的坐标是(1,1).【解析】

待定系数法,直线上点的坐标与方程的.(1)设直线AB的解析式为y=kx+b,将点A(1,0)、点B(0,﹣1)分别代入解析式即可组成方程组,从而得到AB的解析式.(1)设点C的坐标为(x,y),根据三角形面积公式以及S△BOC=1求出C的横坐标,再代入直线即可求出y的值,从而得到其坐标.【详解】解:(1)设直线AB的解析式为y=kx+b,∵直线AB过点A(1,0)、点B(0,﹣1),∴{k+b∴直线AB的解析式为y=1x﹣1.(1)设点C的坐标为(x,y),∵S△BOC=1,∴12•1•x=1,解得x=1∴y=1×1﹣1=1.∴点C的坐标是(1,1).24、(1)见解析;(2).【解析】

(1)由ABCD为平行四边形,根据平行四边形的对边平行得到AB与DC平行,根据两直线平行内错角相等得到一对角相等,由E为BC的中点,得到两条线段相等,再由对顶角相等,利用ASA可得出三角形ABE与三角形FCE全等;进而得出AB=FC,即可得出四边形ABFC是平行四边形,再由直角三角形的判定方法得出△BFC是直角三角形,即可得出平行四边形ABFC是矩形.(2)由等边三角形的性质得出∠AFC=60°,AF=DF=4,得出CF=CD=2,由矩形的性质得出∠ACF=90°,得出AC=CF=2,即可得出四边形ABFC的面积=AC•CF=4.【详解】解:(1)∵四边形ABCD为平行四边形,∴AB∥DC,∴∠ABE=∠ECF,又∵E为BC的中点∴BE=CE,在△ABE和△FCE中,,∴△ABE≌△FCE(ASA);∴AE=EF,AB=CF,∴四边形ABFC是平行四边形,∵∠AEC=2∠ABC=∠ABC+∠BAE,∴∠ABC=BAE,∴AE=BE∵AE=EF,BE=CE,∴AF=BC,∴平行四边形ABFC是矩形;(2)∵△AFD是等边三角形,∴∠AFC=60°,AF=DF=4,∴CF=CD=2,∵四边形ABFC是矩形,∴∠ACF=90°,∴AC=CF=2,∴四边形ABFC的面积=AC•CF=.【点睛】此题主要考查了矩形的判定以及全等三角形的判定与性质等知识,根据已知得出AB=CF是解题关键.25、(1)10;60;(2)中位数为21、众数为20;(3)奖励标准应定为21万元,理由见解析【解析】试题分析:(1)由统计图中的信息可知:不称职的有2人,占总数的6.7%,由此可得总人数为:2÷6.7%=30(人);而条形统计图中的信息显示:优秀的有3人,称职的有18人,由此可得3÷30×100%=10%,18÷30×100%=60%,即a=10,b=60;(2)由条形统计图可知,这组数据的众数为20,中位数是按大小排列后的第15和16个数据的平均数,而由第15和16个数据都是21可知中位数是21;(3)由题意可知:奖励标准应该定为21万元,因为由(2)可知,这组数据的中位数是21万,因此按要使一半左右的人获得奖励,应该以中位数作为奖励的标准.试题解析:(1)由统计图中信息可得:该商场进入统计的营业员总数=2÷6.7%=30(人);∵优秀的有3人,∴a%=3÷30×100%=10%,∴a=10;∵称职的有18人,∴b%=18÷30×100%=60%,∴b=60;(2)由条形统计图可知,这组数据的众数为20;由条件下统计图可知,这30个数据按从小到大排列后,第15个数和第16个数都是21,∴这组数据的中位数为21;(3)∵要使一半左右的人获得奖励,∴奖励标准应该以中位数为准,∴奖励标准应定为21万元.点睛:这是一道综合应用条形统计图和扇形统计图中的信息来解决相关问题的统计图,解题的关键是弄清两幅统计图中数据间的对应关系,再进行细心计算即可.26、(1)见详解;(2);.【解析】

(1)由正方形的性质得出AD=AB,AG=AE,∠BAD=∠EAG=90°,由∠BAE+∠EAD=∠BAD,∠DAG+∠EAD=∠EAG,推出∠BAE=∠DAG,由SAS即可证得△DAG≌△BAE;(2)①由AB=2,AE=1,由勾股定理得AF=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论