版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省肇庆第四中学2024年数学八年级下册期末检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,四边形ABCD的对角线互相平分,要使它变为菱形,需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD2.一艘渔船从港口A沿北偏东60°方向航行至C处时突然发生故障,在C处等待救援.有一救援艇位于港口A正东方向20(﹣1)海里的B处,接到求救信号后,立即沿北偏东45°方向以30海里/小时的速度前往C处救援.则救援艇到达C处所用的时间为()A.小时 B.小时 C.小时 D.小时3.甲、乙、丙三种糖果的售价分别为每千克6元、7元、8元,若将甲种8千克,乙种10千克,丙种3千克混在一起,则售价应定为每千克()A.7元 B.6.8元 C.7.5元 D.8.6元4.下列式子中,属于最简二次根式的是:A. B. C. D.5.小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象,下列说法正确的是()A.小明吃早餐用了25min B.小明读报用了30minC.食堂到图书馆的距离为0.8km D.小明从图书馆回家的速度为0.8km/min6.将下列多项式因式分解,结果中不含有因式(x﹣2)的是()A.x2﹣4 B.x3﹣4x2﹣12xC.x2﹣2x D.(x﹣3)2+2(x﹣3)+17.把方程化成(x+m)2=n的形式,则m、n的值是()A.4,13 B.4,19 C.-4,13 D.-4,198.如图,在中,已知,,平分交边于点,则边的长等于()A.4cm B.6cm C.8cm D.12cm9.在四边形ABCD中,对角线AC、BD相交于点O,从①AB=CD;②AB∥CD;③OA=OC;④OB=OD;⑤AC⊥BD;⑥AC平分∠BAD;这六个条件中,则下列各组组合中,不能推出四边形ABCD为菱形的是( )A.①②⑤ B.①②⑥ C.③④⑥ D.①②④10.如图,在四边形ABCD中,点D在AC的垂直平分线上,.若,则的度数是()A. B. C. D.50°11.当压力F(N)一定时,物体所受的压强p(Pa)与受力面积S(m2)的函数关系式为P=(S≠0),这个函数的图象大致是()A. B.C. D.12.如图以正方形的一边为边向下作等边三角形,则的度数是()A.30° B.25° C.20° D.15°二、填空题(每题4分,共24分)13.如图,四边形ABCD中,连接AC,AB∥DC,要使AD=BC,需要添加的一个条件是_____.14.如图,在平行四边形ABCD中,对角线AC⊥BD,AC=10,BD=24,则AD=____________15.既是轴对称图形,又是中心对称图形的四边形是______.16.有两名学员小林和小明练习飞镖,第一轮10枚飞镖掷完后两人命中的环数如图所示,已知新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是______;这名选手的10次成绩的极差是______.17.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C,A’B’交AC于点D,若∠A’DC=90°,则∠A=°.18.已知,则的值为__________.三、解答题(共78分)19.(8分)作一直线,将下图分成面积相等的两部分(保留作图痕迹).20.(8分)如图,矩形中,是的中点,延长,交于点,连接,.(1)求证:四边形是平行四边形;(2)当平分时,猜想与的数量关系,并证明你的结论.21.(8分)如图,已知各顶点的坐标分别为,,.(1)画出以点为旋转中心,按逆时针方向旋转后得到的;(2)将先向右平移4个单位长度,再向上平移5个单位长度,得到.①在图中画出;②如果将看成是由经过一次平移得到的,请指出这一平移的平移方向和平移距离.22.(10分)在汛期来临之前,某市提前做好防汛工作,该市的、两乡镇急需防汛物质分别为80吨和120吨,由该市的甲、乙两个地方负责全部运送到位,甲、乙两地有防汛物质分别为110吨和90吨,已知甲、乙两地运到、两乡镇的每吨物质的运费如表所示:甲乙20元/吨15元/吨25元/吨24元/吨(1)设乙地运到乡镇的防汛物质为吨,求总运费(元)关于(吨)的函数关系式,并指出的取值范围.(2)求最低总运费,并说明总运费最低时的运送方案.23.(10分)如图,已知E是▱ABCD中BC边的中点,连接AE并延长AE交DC的延长线于点F.(1)求证:△ABE≌△FCE.(2)连接AC、BF,若∠AEC=2∠ABC,求证:四边形ABFC为矩形。24.(10分)在平行四边形中,的垂直平分线分别交于两点,交于点,试判断四边形的形状,并说明理由.25.(12分)星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:进价(元/台)售价(元/台)电饭煲200250电压锅160200(1)一季度,橱具店购进这两种电器共30台,用去了5600元,并且全部售完,问橱具店在该买卖中赚了多少钱?(2)为了满足市场需求,二季度橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的,问橱具店有哪几种进货方案?并说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?26.已知直线y1=2x与直线y2=﹣2x+4相交于点A.以下结论:①点A的坐标为A(1,2);②当x=1时,两个函数值相等:③当x<1时,y1<y2;④直线y1=2x与直线y2=﹣2x+4在平面直角坐标系中的位置关系是平行.其中正确的个数有()个.A.4 B.3 C.2 D.1
参考答案一、选择题(每题4分,共48分)1、C【解析】
要使四边形ABCD是菱形,根据题中已知条件四边形ABCD的对角线互相平分可以运用方法“对角线互相垂直平分的四边形是菱形”或“邻边相等的平行四边形是菱形”,添加AC⊥BD或AB=BC.【详解】∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∴要使四边形ABCD是菱形,需添加AC⊥BD或AB=BC,故选:C.【点睛】考查了菱形的判定方法,关键是熟练把握菱形的判定方法①定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);②四条边都相等的四边形是菱形;③对角线互相垂直平分的平行四边形是菱形.具体选择哪种方法需要根据已知条件来确定.2、C【解析】
过点C作CD垂直AB延长线于D,根据题意得∠CDB=45°,∠CAD=30°,设BD=x则CD=BD=x,BC=x,由∠CAD=30°可知tan∠CAD=即,解方程求出BD的长,从而可知BC的长,进而求出救援艇到达C处所用的时间即可.【详解】如图:过点C作CD垂直AB延长线于D,则∠CDB=45°,∠CAD=30°,∵∠CDB=45°,CD⊥BD,∴BD=CD,设BD=x,救援艇到达C处所用的时间为t,∵tan∠CAD=,AD=AB+BD,∴,得x=20(海里),∴BC=BD=20(海里),∴t==(小时),故选C.【点睛】本题考查特殊角三角函数,正确添加辅助线、熟练掌握特殊角的三角函数值是解题关键.3、B【解析】
根据加权平均数的计算方法:先求出所有糖果的总钱数,再除以糖果的总质量,即可得出答案.【详解】售价应定为:≈6.8(元);故选B.【点睛】本题考查的是加权平均数的求法.本题易出现的错误是对加权平均数的理解不正确,而求6、7、8这三个数的平均数.4、A【解析】
根据最简二次根式的定义对各选项进行判断.【详解】解:=3,=2,=而为最简二次根式.
故选:A.【点睛】本题考查最简二次根式:熟练掌握最简二次根式满足的条件(被开方数的因数是整数或字母,因式是整式;被开方数中不含有可化为平方数或平方式的因数或因式).5、B【解析】分析:根据函数图象判断即可.详解:小明吃早餐用了(25-8)=17min,A错误;小明读报用了(58-28)=30min,B正确;食堂到图书馆的距离为(0.8-0.6)=0.2km,C错误;小明从图书馆回家的速度为0.8÷10=0.08km/min,D错误;故选B.点睛:本题考查的是函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合题意正确计算是解题的关键.6、B【解析】
试题解析:A.x2-4=(x+2)(x-2),含有因式(x-2),不符合题意;B.x3-4x2-12x=x(x+2)(x-6),不含有因式(x-2),正确;C.x2-2x=x(x-2),含有因式(x-2),不符合题意;D.(x-3)2+2(x-3)+1=x2-4x+4=(x-2)2,含有因式(x-2),不符合题意,故选B.7、C【解析】
根据配方的步骤把x2-8x+3=0配方变为(x+m)2=n的形式,即可得答案.【详解】x2-8x+3=0移项得:x2-8x=-3等式两边同时加上一次项系数一半的平方,得x2-8x+42=-3+42配方得:(x-4)2=13∴m=-4,n=13.故选C.【点睛】此题考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.8、A【解析】
首先根据平行四边形的性质,得出,,,进而得出∠DAE=∠AEB,然后得出∠BAE=∠AEB,根据等腰三角形的性质,即可得解.【详解】∵平行四边形ABCD∴,,∴∠DAE=∠AEB又∵平分∴∠BAE=∠DAE∴∠BAE=∠AEB∴AB=BE又∵,,∴CD=4cm故答案为A.【点睛】此题主要考查平行四边形和等腰三角形的性质,熟练掌握,即可解题.9、D【解析】
根据题目中所给条件可得①②组合,③④组合都能判定四边形为平行四边形,再根据一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);四条边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形进行判定.【详解】,,四边形是平行四边形,如果加上条件⑤可利用对角线互相垂直的平行四边形是菱形进行判定;如果加上条件⑥平分可证明邻边相等,根据邻边相等的平行四边形是菱形进行判定;,,四边形是平行四边形,如果加上条件⑥平分可证明邻边相等,根据邻边相等的平行四边形是菱形进行判定.故选:.【点睛】此题主要考查了菱形的判定,关键是掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);②四条边都相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).10、A【解析】
根据平行线的性质可得,再由线段垂直平分线的性质可得AD=CD,根据等腰三角形的性质可得,由三角形的内角和定理即可求得的度数.【详解】∵,∴,∵点D在AC的垂直平分线上,∴AD=CD,∴,∴.故选A.【点睛】本题考查了平行线的性质、线段垂直平分线的性质及等腰三角形的性质,正确求得是解决问题的关键.11、C【解析】
根据实际意义以及函数的解析式,根据函数的类型,以及自变量的取值范围即可进行判断.【详解】解:当F一定时,P与S之间成反比例函数,则函数图象是双曲线,同时自变量是正数.故选:C.【点睛】此题主要考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.12、D【解析】
由正方形的性质、等边三角形的性质可得,,再根据,得到,故利用即可求解.【详解】解:四边形为正方形,为等边三角形,∴,∴.∵,∴.∴.故选D.【点睛】本题考查了正方形的性质及等边三角形的性质;求得并利用其性质做题是解答本题的关键.二、填空题(每题4分,共24分)13、AB=CD(答案不唯一)【解析】
由AB∥DC,AB=DC证出四边形ABCD是平行四边形,即可得出AD=BC.【详解】解:添加条件为:AB=CD(答案不唯一);理由如下:∵AB∥DC,AB=CD,∴四边形ABCD是平行四边形,∴AD=BC.故答案为AB=CD(答案不唯一).【点睛】本题考查了平行四边形的判定与性质;熟记平行四边形的判定方法,证明四边形是平行四边形是解决问题的关键.14、13【解析】
根据平行四边形对角线互相平分先求出AO、OD的长,再根据AC⊥BD,在Rt△AOD中利用勾股定理进行求解即可.【详解】∵四边形ABCD是平行四边形,∴OA=AC=×10=5,OD=BD=×24=12,又∵AC⊥BD,∴∠AOD=90°,∴AD==13,故答案为:13.【点睛】本题考查了平行四边形的性质,勾股定理,熟练掌握平行四边形的性质是解题的关键.15、矩形(答案不唯一)【解析】
根据轴对称图形与中心对称图形的概念,写一个即可.【详解】解:矩形既是轴对称图形,又是中心对称图形.故答案为:矩形(答案不唯一).【点睛】本题考查了轴对称图形与中心对称图形的概念.16、小林,9环【解析】
根据折线统计图中小明与小林的飞镖命中的环数波动性大小以及极差的定义,即可得到答案.【详解】根据折线统计图,可知小林是新手,小林10次成绩的极差是10-1=9(环)故答案为:小林,9环.【点睛】本题主要考查折线统计图中数据的波动性与极差的定义,掌握极差的定义:一组数据中,最大数与最小数的差,是解题的关键.17、55.【解析】
试题分析:∵把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C∴∠ACA’=35°,∠A=∠A’,.∵∠A’DC=90°,∴∠A’=55°.∴∠A=55°.考点:1.旋转的性质;2.直角三角形两锐角的关系.18、【解析】
根据二次根式有意义的条件可求得x的值,继而可求得y值,代入所求式子即可求得答案.【详解】由题意得,解得:x=4,所以y=3,所以=,故答案为:.【点睛】本题考查了二次根式有意义的条件,熟练掌握是解题的关键.三、解答题(共78分)19、见解析【解析】解:将此图形分成两个矩形,分别作出两个矩形的对角线的交点E,F,则E,F分别为两矩形的对称中心,过点E,F的直线就是所求的直线,如图所示.EEF20、(1)详见解析;(2)【解析】
(1)由矩形的性质可知,因而只需通过证明说明即可.(2)由已知条件易证是等腰直角三角形,即CD=DE,而AD=2DE,由矩形的性质即可知与的数量关系.【详解】解:(1)∵四边形是矩形,∴,∴.∵E是的中点,∴.又∵,∴.∴.又∵,∴四边形是平行四边形.(2).证明:∵平分,∴.∵,∴是等腰直角三角形,∴,∵E是的中点,∴,∵,∴.【点睛】本题主要考查了平行四边形的判定、矩形的性质,灵活应用矩形的性质是解题的关键.21、(l)见解析;(2)①见解析;②平移方向为由到的方向,平移距离是个单位长度【解析】
(1)利用网格特点和旋转的性质画出点A、B、C的对应点A1、B1、C1,从而得到;(2)①利用点平移的规律写出A2、B2、C2的坐标,然后描点即可;②根据平移的规律解答即可.【详解】解:(l)如图所示.(2)①如图所示:②连接,.平移方向为由到的方向,平移距离是个单位长度.【点睛】本题考查了作图-平移及旋转:根据平移和旋转的性质,找到对应点,顺次连接得出平移和旋转后的图形.22、(1),;(2)方案:乙运镇80吨,运镇10吨.甲110吨全部运镇.【解析】
(1)可设由乙运往A镇的化肥为x吨,则运往B镇的化肥为(90-x)吨,甲运往A镇的化肥为(80-x)吨,运往B镇的化肥为(110-80+x)吨,所以y=20(80-x)+25(110-80+x)+15x+24(90-x).其中0≤x≤80;(2)由函数解析式可知,y随着x的增大而减少,所以当x=80时,y最小.因此即可解决问题.【详解】(1)设乙运镇吨,则运镇吨,甲运镇吨,运镇吨.可得:;(2)∵,∴随的增大而减少,当时,最低费用(元).方案:乙运镇80吨,运镇10吨.甲110吨全部运镇.【点睛】本题考查一次函数的应用.根据题意设出未知数并表示出其他的量是解题的关键.23、(1)见解析;(2)见解析【解析】
(1)由ABCD为平行四边形,根据平行四边形的对边平行得到AB与DC平行,根据两直线平行内错角相等得到一对角相等,由E为BC的中点,得到两条线段相等,再由对应角相等,利用ASA可得出三角形ABE与三角形FCE全等;(2)由△ABE与△FCE全等,根据全等三角形的对应边相等得到AB=CF;再由AB与CF平行,根据一组对边平行且相等的四边形为平行四边形得到ABFC为平行四边形,根据平行四边形的对角线互相平分得到AE=EF,BE=EC;再由∠AEC为三角形ABE的外角,利用外角的性质得到∠AEC等于∠ABE+∠EAB,再由∠AEC=2∠ABC,得到∠ABE=∠EAB,利用等角对等边可得出AE=BE,可得出AF=BC,利用对角线相等的平行四边形为矩形可得出ABFC为矩形.【详解】证明:(1)∵四边形ABCD为平行四边形,∴AB∥DC,∴∠ABE=∠ECF,又∵E为BC的中点,∴BE=CE,在△ABE和△FCE中,∵,∴△ABE≌△FCE(ASA);(2)∵△ABE≌△FCE,∴AB=CF,又∵四边形ABCD为平行四边形,∴AB∥CF,∴四边形ABFC为平行四边形,∴BE=EC,AE=EF,又∵∠AEC=2∠ABC,且∠AEC为△ABE的外角,∴∠AEC=∠ABC+∠EAB,∴∠ABC=∠EAB,∴AE=BE,∴AE+EF=BE+EC,即AF=BC,则四边形ABFC为矩形.【点睛】此题考考查矩形的判定,平行四边形的性质,全等三角形的判定与性质,解题关键在于掌握各判定定理24、四边形是菱形,理由见解析。【解析】
根据题意先证明四边形是平行四边形,再根据垂直平分线的性质即可求解.【详解】解:四边形是菱形,理由如下:四边形是平行四边形又垂直平分在和中四边形是平行四边形又四边形是菱形【点睛】此题主要考查菱形的判定,解题的关键是熟知全等三角形的判定与性质及菱形的判定定理.25、(1)1400元;(2)有三种方案:①防购买电饭煲23台,则购买电压锅27台;②购买电饭煲24台,则购买电压锅26台;③购买电饭煲1台,则购买电压锅1台.理由见解析;(3)购进电饭煲、电压锅各1台.【解析】
(1)设橱具店购进电饭煲x台,电压锅y台,根据图表中的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 产权技术合同中技术秘密的法律保护与实践
- 二零二五版宝钢职工意见征集与反馈合同3篇
- 二零二五年度高速铁路施工合同模板3篇
- 二零二五年度高空作业吊篮租赁与作业现场安全检查服务合同3篇
- 二零二五版教师个人发展规划辅导合同3篇
- 二零二五版HSE安全文化建设合同范本3篇
- 二零二五年度餐饮服务业员工劳动合同及职务调整合同2篇
- 2025年浙江温州道德与法制中考试卷
- 二零二五版办公室装修室内绿化养护合同2篇
- 二零二五年度金融科技贷款分期付款与支付清算服务合同2篇
- 2024年新青岛版(六三制)三年级下册科学全册知识点
- 朝韩关系相关分析
- 校园热水方案
- 跟踪服务项目活动实施方案
- 新能源汽车产业链中的区域发展不均衡分析与对策
- 财务机器人技术在会计工作中的应用
- 《保单检视专题》课件
- 建筑保温隔热构造
- 智慧财务综合实训
- 安徽省合肥市2021-2022学年七年级上学期期末数学试题(含答案)3
- 教育专家报告合集:年度得到:沈祖芸全球教育报告(2023-2024)
评论
0/150
提交评论