版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省义乌市稠州中学2024年八年级数学第二学期期末调研模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,边长为a,b的矩形的周长为10,面积为6,则a2b+ab2的值为()A.60 B.16 C.30 D.112.顺次连接四边形各边中点所得到的四边形是菱形,则四边形必须满足的条件是()A.对角线互相垂直 B.对角线相等C.一组邻边相等 D.一个内角是直角3.如图,在平面直角坐标系中,矩形ABCD的对角线AC经过坐标原点O,矩形的边分别平行于坐标轴,点B在函数y=kx(k≠0,x>0)的图象上,点D的坐标为(﹣4,1),则A.54 B.-54 C.44.某社区超市以4元/瓶从厂家购进一批饮料,以6元/瓶销售.近期计划进行打折销售,若这批饮料的销售利润不低于20%则最多可以打()A.六折 B.七折 C.七五折 D.八折5.在中,、分别是、边的中点,若,则的长是()A.9 B.5 C.6 D.46.某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人4盒牛奶,那么剩下28盒牛奶;如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒.则这个敬老院的老人最少有()A.29人 B.30人 C.31人 D.32人7.在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8、7、9、8、8乙:7、9、6、9、9则下列说法中错误的是()A.甲、乙得分的平均数都是8B.甲得分的众数是8,乙得分的众数是9C.甲得分的中位数是9,乙得分的中位数是6D.甲得分的方差比乙得分的方差小8.如图所示,在平行四边形中,对角线相交于点,,,,则平行四边形的周长为()A. B.C. D.9.如图是我国一位古代数学家在注解《周髀算经》时给出的,曾被选为2002年在北京召开的国际数学家大会的会徽,它通过对图形的切割、拼接,巧妙地证明了勾股定理,这位伟大的数学家是()A.杨辉 B.刘徽 C.祖冲之 D.赵爽10.下面四个应用图标中,既是轴对称图形又是中心对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,则k=_______.12.在一次越野赛跑中,当小明跑了1600m时,小刚跑了1450m,此后两人分别调整速度,并以各自新的速度匀速跑,又过100s时小刚追上小明,200s时小刚到达终点,300s时小明到达终点.他们赛跑使用时间t(s)及所跑距离如图s(m),这次越野赛的赛跑全程为m?13.化简+的结果是________.14.已知一次函数y=kx﹣k,若y随着x的增大而减小,则该函数图象经过第____象限.15.如图,,以点为圆心,任意长为半径画弧,交于点,交于点,再分别以点、为圆心,大于长为半径画弧交于点,过点作射线,在射线上截取,过点作,垂足为点,则的长为________________.16.如图,菱形ABCD中,点M、N分别在AD,BC上,且AM=CN,MN与AC交于点O,连接DO,若∠BAC=28°,则∠ODC=_____.17.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3,则△ABC的周长是_______.18.一支蜡烛长10cm,点燃时每分钟燃烧0.2cm,则点燃后蜡烛长度(cm)随点燃时间(min)而变化的函数关系式为_____________________,自变量的取值范围是________________.三、解答题(共66分)19.(10分)已知点A(4,0)及在第一象限的动点P(x,y),且x+y=5,0为坐标原点,设△OPA的面积为S.(1)求S关于x的函数表达式;(2)求x的取值范围;(3)当S=4时,求P点的坐标.20.(6分)为了满足学生的物质需求,我市某中学到红旗超市准备购进甲、乙两种绿色袋装食品.其中甲、乙两种绿色袋装食品的进价和售价如下表:甲乙进价(元/袋)售价(元/袋)2013已知:用2000元购进甲种袋装食品的数量与用1600元购进乙种袋装食品的数量相同.(1)求的值;(2)要使购进的甲、乙两种绿色袋装食品共800袋的总利润(利润=售价-进价)不少于5200元,且不超5280元,问该红旗超市有几种进货方案?(3)在(2)的条件下,该红旗超市准备对甲种袋装食品进行优惠促销活动,决定对甲种袋装食品每袋优惠元出售,乙种袋装食品价格不变.那么该红旗超市要获得最大利润应如何进货?21.(6分)春节前夕,某商店根据市场调查,用2000元购进第一批盒装花,上市后很快售完,接着又用4200元购进第二批这种盒装花.已知第二批所购的盒数是第一批所购花盒数的3倍,且每盒花的进价比第一批的进价少6元.求第一批盒装花每盒的进价.22.(8分)如图1,E为正方形ABCD的边BC上一点,F为边BA延长线上一点,且CE=AF.(1)求证:DE⊥DF;(2)如图2,若点G为边AB上一点,且∠BGE=2∠BFE,△BGE的周长为16,求四边形DEBF的面积;(3)如图3,在(2)的条件下,DG与EF交于点H,连接CH且CH=52,求AG的长.23.(8分)先化简,再求值:÷(m﹣1﹣),其中m=.24.(8分)已知一次函数,完成下列问题:(1)在所给直角坐标系中画出此函数的图象;(2)根据图象回答:当______时,.25.(10分)已知:如图,在等边三角形中,点,分别在边和上,且.以为边作等边三角形,连接,,.(1)你能在图中找到一对全等三角形吗?请说明理由;(2)图中哪个三角形可以通过旋转得到另一个三角形?请说明是怎样旋转的.26.(10分)如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:△AFD≌△BFE;(2)求证:四边形AEBD是菱形;(3)若DC=,tan∠DCB=3,求菱形AEBD的面积.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
先把所给式子提公因式进行因式分解,整理为与所给周长和面积相关的式子,再代入求值即可.【详解】∵矩形的周长为10,∴a+b=5,∵矩形的面积为6,∴ab=6,
∴a2b+ab2=ab(a+b)=1.
故选:C.【点睛】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.2、A【解析】
首先根据题意画出图形,由四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,利用三角形中位线的性质与菱形的性质,即可判定原四边形一定是对角线相等的四边形.【详解】如图,根据题意得:四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,∴EF=FG=GH=EH,BD=2EF,AC=2FG,∴BD=AC.∴原四边形一定是对角线相等的四边形.故选B.【点睛】本题考查中点四边形,熟练掌握中位线的性质是解题的关键.3、D【解析】
由于点B的坐标不能求出,但根据反比例函数的几何意义只要求出矩形OEBF的面积也可,依据矩形的性质发现S矩形OGDH=S矩形OEBF,而S矩形OGDH可通过点D(﹣4,1)转化为线段长而求得.,在根据反比例函数的所在的象限,确定k的值即可.【详解】解:如图,根据矩形的性质可得:S矩形OGDH=S矩形OEBF,∵D(﹣4,1),∴OH=4,OG=1,∴S矩形OGDH=OH•OG=4,设B(a,b),则OE=a,OF=﹣b,∴S矩形OEBF,=OE•OF=﹣ab=4,又∵B(a,b)在函数y=kx(k≠0,x>∴k=ab=﹣4故选:D.【点睛】考查矩形的性质,反比例函数图象上点的坐标特征以及灵活地将坐标与线段长的相互转化.4、D【解析】
设打x折后销售利润不低于20%,根据这批饮料的销售利润不低于20%列不等式求解即可.【详解】设打x折后销售利润不低于20%,根据题意得6x-4≥4×20%,解得x≥0.8,所以,最多可以打8折.故选D.【点睛】此题主要考查了一元一次不等式的应用,根据实际问题中的条件列不等式时,要注意抓住题目中的一些关键性词语,找出不等关系,列出不等式式是解题关键.5、C【解析】
根据三角形的中位线定理得出AB=2DE,把DE的值代入即可.【详解】解:∵D、E分别是BC、AC边的中点,∴DE是△CAB的中位线,∴AB=2DE=6.故选C.【点睛】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记并灵活应用定理是解题的关键.6、B【解析】设这个敬老院的老人有x人,则有牛奶(4x+28)盒,根据关键语句“如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒”可得不等式组:,解得:29<x≤1.∵x为整数,∴x最少为2.故选B.7、C【解析】
分别求出甲、乙的平均数、众数、中位数及方差可逐一判断.【详解】选项A,由平均数的计算方法可得甲、乙得分的平均数都是8,此选项正确;选项B,甲得分次数最多是8分,即众数为8,乙得分最多的是9分,即众数为9故此选项正确;选项C,甲得分从小到大排列为:7、8、8、8、9,可得甲的中位数是8分;乙得分从小到大排列为:6、7、9、9、9,可得乙的中位数是9分;此选项错误;选项D,×[(8﹣8)2+(7﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2]=×2=0.4,=×[(7﹣8)2+(9﹣8)2+(6﹣8)2+(9﹣8)2+(9﹣8)2]=×8=1.6,所以,故D正确;故答案选C.考点:算术平均数;中位数;众数;方差.8、D【解析】
由▱ABCD的对角线AC,BD相交于点O,AE=EB,易得DE是△ABC的中位线,即可求得BC的长,继而求得答案.【详解】∵▱ABCD的对角线AC,BD相交于点O,
∴OA=OC,AD=BC,AB=CD=5,
∵AE=EB,OE=3,
∴BC=2OE=6,
∴▱ABCD的周长=2×(AB+BC)=1.
故选:D.【点睛】此题考查了平行四边形的性质以及三角形中位线的性质.注意证得DE是△ABC的中位线是关键.9、D【解析】
3世纪,汉代赵爽在注解《周髀算经》时,通过对图形的切割、拼接、巧妙地利用面积关系证明了勾股定理.【详解】由题意,可知这位伟大的数学家是赵爽.
故选:D.【点睛】考查了数学常识,勾股定理的证明.3世纪我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.赵爽通过对这种图形切割、拼接,巧妙地利用面积关系证明了著名的勾股定理.10、C【解析】
根据轴对称图形和中心对称图形的概念即可得出.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,是中心对称图形,故此选项正确;D、不是轴对称图形,是中心对称图形,故此选项错误;故选C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形:在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.二、填空题(每小题3分,共24分)11、-5【解析】
根据“点P(1,2)关于x轴的对称点为P′”求出点P′的坐标,再将其代入y=kx+3,即可求出答案.【详解】∵点P(1,2)关于x轴的对称点为P′∴点P′坐标为(1,-2)又∵点P′在直线y=kx+3上∴-2=k+3解得k=-5,故答案为-5.【点睛】本题考查的是坐标对称的特点与一次函数的知识,能够求出点P′坐标是解题的关键.12、1.【解析】试题分析:设小明、小刚新的速度分别是xm/s、ym/s,然后根据100s后两人相遇和两人到达终点的路程列出关于x、y的二元一次方程组,求解后再根据小明所跑的路程等于越野赛的全程列式计算即可得解.试题解析:设小明、小刚新的速度分别是xm/s、ym/s,由题意得,由①得,y=x+1.5③,由②得,4y-3=6x④,③代入④得,4x+6-3=6x,解得x=1.5,故这次越野赛的赛跑全程=1600+300×1.5=1600+450=1m.考点:一次函数的应用;二元一次方程组的应用.13、1【解析】
找到公分母x-3,再利用同分母相加减法则即可求解.【详解】+=-==1【点睛】本题考查了分式的化简,属于简单题,找到公分母是解题关键.14、【解析】试题分析:∵一次函数y=kx﹣k,y随着x的增大而减小,∴k<0,即﹣k>0,∴该函数图象经过第一、二、四象限.故答案为一、二、四.考点:一次函数图象与系数的关系.15、5cm【解析】
根据角平分线的性质、RT△中,30°所对的直角边等于斜边的一般,本题得以解决.【详解】解:由题意可得,
OC为∠MON的角平分线,
∵,OC平分∠AOB,∴∠MOP=∠MON=30°,
∵,∴∠ODP=90°,∵OP=10,
∴PD=OP=5,故答案为:5cm.【点睛】本题考查了角平分线的性质及直角三角形的性质,解题的关键是掌握直角三角形的性质.16、62°【解析】
证明≌,根据全等三角形的性质得到AO=CO,根据菱形的性质有:AD=DC,根据等腰三角形三线合一的性质得到DO⊥AC,即∠DOC=90°.根据平行线的性质得到∠DCA=28°,根据三角形的内角和即可求解.【详解】四边形ABCD是菱形,AD//BC,在与中,,≌;AO=CO,AD=DC,∴DO⊥AC,∴∠DOC=90°.∵AD∥BC,∴∠BAC=∠DCA.∵∠BAC=28°,∠BAC=∠DCA.,∴∠DCA=28°,∴∠ODC=90°-28°=62°.故答案为62°【点睛】考查菱形的性质,等腰三角形的性质,平行线的性质,三角形的内角和定理等,比较基础,数形结合是解题的关键.17、41【解析】
证明△ABN≌△ADN,求得AD=AB=10,BN=DN,继而可和CD长,结合M为BC的中点判断MN是△BDC的中位线,从而得出CD长,再根据三角形周长公式进行计算即可得.【详解】在△ABN和△ADN中,,∴△ABN≌△ADN,∴BN=DN,AD=AB=10,又∵点M是BC中点,∴MN是△BDC的中位线,∴CD=2MN=6,故△ABC的周长=AB+BC+CD+AD=10+15+6+10=41,故答案为:41.【点睛】本题考查了全等三角形的判定与性质,三角形的中位线定理,等腰三角形的判定等,注意培养自己的敏感性,一般出现高、角平分线重合的情况,都需要找到等腰三角形.18、y=10-0.2x0≤x≤50【解析】
根据点燃后蜡烛的长度=蜡烛原长-燃烧掉的长度可列出函数关系式;根据0≤y≤10可求出自变量的取值范围.【详解】解:由题意得:y=10-0.2x,∵0≤y≤10,∴0≤10-0.2x≤10,解得:0≤x≤50,∴自变量x的取值范围是:0≤x≤50,故答案为:y=10-0.2x;0≤x≤50.【点睛】本题考查了由实际问题抽象出一次函数,正确得出变量之间的关系是解题的关键.三、解答题(共66分)19、(1)S=10﹣2x;(2)0<x<5;(3)(3,2)【解析】
(1)根据题意画出图形,由x+y=5可知y=5﹣x,再由三角形的面积公式即可得出结论;
(2)由点P(x,y)在第一象限,且x+y=5得出x的取值范围即可;
(3)把S=4代入(1)中的关系式求出x的值,进而可得出y的值.【详解】(1)如图:∵x+y=5,∴y=5﹣x,∴S=×4×(5﹣x)=10﹣2x;(2)∵点P(x,y)在第一象限,且x+y=5,∴0<x<5;(3)∵由(1)知,S=10﹣2x,∴10﹣2x=4,解得x=3,∴y=2,∴P(3,2).【点睛】本题考查的是一次函数的性质,根据题意画出图形,利用数形结合求解是解答此题的关键.20、(1);(2)共有17种方案;(3)当时,有最大值,即此时应购进甲种绿色袋装食品240袋,表示出乙种绿色袋装食品560袋.【解析】
(1)根据“用2000元购进甲种袋装食品的数量与用1600元购进乙种袋装食品的数量相同”列出方程并解答;
(2)设购进甲种绿色袋装食品x袋,表示出乙种绿色袋装食品(800-x)袋,然后根据总利润列出一元一次不等式组解答;
(3)设总利润为W,根据总利润等于两种绿色袋装食品的利润之和列式整理,然后根据一次函数的增减性分情况讨论求解即可.【详解】解:(1)依题意得:解得:,经检验是原分式方程的解;(2)设购进甲种绿色袋装食品袋,表示出乙种绿色袋装食品袋,根据题意得,解得:,∵是正整数,,∴共有17种方案;(3)设总利润为,则,①当时,,随的增大而增大,所以,当时,有最大值,即此时应购进甲种绿色袋装食品256袋,乙种绿色袋装食品544袋;②当时,,(2)中所有方案获利都一样;③当时,,随的增大而减小,所以,当时,有最大值,即此时应购进甲种绿色袋装食品240袋,表示出乙种绿色袋装食品560袋.【点睛】本题考查了分式方程与一元一次不等式组的综合应用。21、20元【解析】试题分析:设第一批盒装花每盒的进价为x元,根据第二批所购的盒数是第一批所购花盒数的3倍,每盒花的进价比第一批的进价少6元,列出方程求解即可.解:设第一批盒装花每盒的进价为x元,根据题意列方程得:=,解得:x=20,经检验:x=20是原方程的根;答:第一批盒装花每盒的进价是20元.考点:分式方程的应用.22、(1)见解析;(2)64;(3)24【解析】
(1)证明ΔADF≅ΔCDE,根据全等三角形的性质得到∠ADF=∠CDE,根据垂直的定义证明;(2)根据三角形的外角的性质、等腰三角形的判定定理得到GE=GF,根据三角形的周长公式求出BA,根据正方形的面积公式计算;(3)作HP⊥HC交CB的延长线于点P,证明ΔHDC≅ΔHEP,得到DC=PE=8,CH=HP=52,根据勾股定理列方程求出EG【详解】(1)证明:∵四边形ABCD是正方形,∴AD=CD,∠DAF=∠DCE=90°,在ΔADF和ΔCDE中,AD=CD∠DAF=∠DCE∴ΔADF≅ΔCDE(SAS)∴∠ADF=∠CDE,∵∠ADE+∠CDE=90°,∴∠ADF+∠ADE=90°,即∠FDE=90°,∴DE⊥DF;(2)解:∵∠BGE=2∠BFE,∠BGE=∠BFE+∠GEF,∴∠GEF=∠GFE,∴GE=GF,∵ΔBGE的周长为16∴BE+GB+GE=16∴BE+GB+GF=16∴BE+BA+AF=16∵CE=AF,∴BA+CB=16,∴BC=BA=8,∴===A=64;(3)过点H作HP⊥HC交CB的延长线于点P,∵GF=GE,DF=DE,∴DG垂直平分EF,∵∠FDE=90°,∴DH=EH,∠DHE=∠PHC=90°,∴∠DHE-∠EHC=∠PHC-∠EHC,即∠DHC=∠EHP,∵在四边形DHEC中,∠HDC+∠HEC=180°,∠HEC+∠HEP=180°,∴∠HEP=∠HDC,在ΔHDC和ΔHEP中,∠DHC=∠EHPDH=EH∴ΔHDC≅ΔHEP(ASA)∴DC=PE=8,CH=HP=52∴在RtΔPHC中,∴EC=PC-PE=2,∴AF=2,BE=6,在RtΔBGE中,设EG=x,则由勾股定理得,(10-x)解得:x=34∴AG=GF-AF=24【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年代理合同签署注意事项
- 2025年商业合作形象授权代理服务协议
- 二零二五版商业地产买卖合同附带抵押权登记0023篇
- 2025年高校与企业联合培养协议教授合作协议9篇
- 二零二五年度出口合同模板(含出口货物仓储与物流服务)4篇
- 2025年度装配式建筑构件生产与施工合同范本4篇
- 2025版水电安装工程新能源并网服务合同集锦3篇
- 二零二五版零担运输合同物流数据安全保护合同4篇
- 二零二五版路演车辆租赁与后勤保障合同4篇
- 二零二五年度家族财产管理及子女成长支持协议
- (一模)临汾市2025年高考考前适应性训练考试(一)语文试卷(含答案)
- 2024-2025学年沪科版数学七年级上册期末综合测试卷(一)(含答案)
- 2023年广东省公务员录用考试《行测》真题及答案解析
- 2024年公证遗产继承分配协议书模板
- 燃气经营安全重大隐患判定标准课件
- 深圳小学英语单词表(中英文)
- 护理质量反馈内容
- 抖音搜索用户分析报告
- 钻孔灌注桩技术规范
- 2023-2024学年北师大版必修二unit 5 humans and nature lesson 3 Race to the pole 教学设计
- 供货进度计划
评论
0/150
提交评论