湖北省武汉市华中师大一附中2024年八年级数学第二学期期末监测模拟试题含解析_第1页
湖北省武汉市华中师大一附中2024年八年级数学第二学期期末监测模拟试题含解析_第2页
湖北省武汉市华中师大一附中2024年八年级数学第二学期期末监测模拟试题含解析_第3页
湖北省武汉市华中师大一附中2024年八年级数学第二学期期末监测模拟试题含解析_第4页
湖北省武汉市华中师大一附中2024年八年级数学第二学期期末监测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省武汉市华中师大一附中2024年八年级数学第二学期期末监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.下列计算正确的是()A. B. C. D.2.若分式方程+3=有增根,则a的值是()A.﹣1 B.0 C.1 D.23.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是()A.4 B.6 C.8 D.104.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<1;②a>1;③当x<4时,y1<y2;④b<1.其中正确结论的个数是()A.4个 B.3个 C.2个 D.1个5.已知一组数据1,2,3,n,它们的平均数是2,则这一组数据的方差为()A.1 B.2 C.3 D.16.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,下列说法正确的是()A.y1<y2 B.y1>y2 C.y1=y2 D.不能确定7.如图,已知D、E分别是△ABC的AB、AC边上的一点,DE∥BC,△ADE与四边形DBCE的面积之比为1:3,则AD:AB为()A.1:4 B.1:3 C.1:2 D.1:58.若一个多边形的内角和为360°,则这个多边形的边数是(

)A.3

B.4

C.5

D.69.一个多边形的每个内角均为120°,则这个多边形是()A.四边形 B.五边形 C.六边形 D.七边形10.从甲、乙、丙、丁四位同学中选派两位选手参加数学竞赛,老师对他们五次数学测验成绩进行统计,得出他们的平均分均为85分,且,,,.根据统计结果,最适合参加竞赛的两位同学是()A.甲、乙 B.丙、丁 C.甲、丁 D.乙、丙二、填空题(每小题3分,共24分)11.八年级(1)班安排了甲、乙、丙、丁四名同学参加4×100米接力赛,打算抽签决定四人的比赛顺序,则甲跑第一棒的概率为______.12.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2等_________.13.一组数据1,3,1,5,2,a的众数是a,这组数据的中位数是_________.14.评定学生的学科期末成绩由考试分数,作业分数,课堂参与分数三部分组成,并按3:2:5的比例确定,已知小明的数学考试80分,作业95分,课堂参与82分,则他的数学期末成绩为_____.15.已知正比例函数y=(k+5)x,且y随x的增大而减小,则k的取值范围是____.16.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为.17.如图,平行四边形ABCD中,点O是对角线AC的中点,点E在边AB上,连接DE,取DE的中点F,连接EO并延长交CD于点G.若BE=3CG,OF=2,则线段AE的长是_____.18.若分式值为0,则的值为__________.三、解答题(共66分)19.(10分)如图,△ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD与BE相交于点F.(1)试说明△ABD≌△BCE;(2)△AEF与△BEA相似吗?请说明理由;(3)BD2=AD·DF吗?请说明理由.20.(6分)已知:如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为t秒.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值;(3)当△ABP为等腰三角形时,求t的值21.(6分)某商店一种商品的定价为每件50元.商店为了促销,决定如果购买5件以上,则超过5件的部分打七折.(1)用表达式表示购买这种商品的货款(元)与购买数量(件)之间的函数关系;(2)当,时,货款分别为多少元?22.(8分)如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.23.(8分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-2,1),B(-1,4),C(-3,3).(1)画出△ABC绕点B逆时针旋转90°得到的△A1BC1.(2)以原点O为位似中心,位似比为2:1,在y轴的左侧,画出将△ABC放大后的△A2B2C2,并写出A2点的坐标_________.24.(8分)如图1,四边形ABCD是正方形,AB=4,点G在BC边上,BG=3,DE⊥AG于点E,BF⊥AG于点F.(1)求BF和DE的长;(2)如图2,连接DF、CE,探究并证明线段DF与CE的数量关系与位置关系.25.(10分)北京到济南的距离约为500km,一辆高铁和一辆特快列车都从北京去济南,高铁比特快列车晚出发3小时,最后两车同时到达济南,已知高铁的速度是特快列车速度的倍求高铁和特快列车的速度各是多少?列方程解答26.(10分)已知关于x的函数y=(m+3)x|m+2|是正比例函数,求m的值.

参考答案一、选择题(每小题3分,共30分)1、C【解析】

根据二次根式的性质和计算法则分别计算可得正确选项。【详解】解:A、不是同类二次根式,不能合并,故本选项错误;B、不是同类二次根式,不能合并,故本选项错误;C、正确;D、,故故本选项错误。故选:C【点睛】本题考查了二次根式的性质和运算,掌握运算法则是关键。2、B【解析】

根据分式方程有增根可得出x=2是方程1+3(x-2)=a+1的根,代入x=2即可求出a值.【详解】解:∵分式方程+3=有增根,∴x=2是方程1+3(x-2)=a+1的根,

∴a=1.

故选:B.【点睛】本题考查分式方程的增根,熟记分式方程增根的定义是解题的关键.3、C【解析】∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴AC=BD=4,OA=OC,OB=OD,∴OD=OC=AC=2,∴四边形CODE是菱形,∴四边形CODE的周长为:4OC=4×2=1.故选C.4、D【解析】

根据一次函数的性质对①②④进行判断;当x<4时,根据两函数图象的位置对③进行判断.【详解】解:根据图象y1=kx+b经过第一、二、四象限,∴k<1,b>1,故①正确,④错误;∵y2=x+a与y轴负半轴相交,∴a<1,故②错误;当x<4时图象y1在y2的上方,所以y1>y2,故③错误.所以正确的有①共1个.故选D.【点睛】此题主要考查了一次函数,以及一次函数与不等式,根据函数图象的走势和与y轴的交点来判断各个函数k,b的值.5、D【解析】

先根据平均数的定义确定出n的值,再根据方差的计算公式计算即可.【详解】解:∵数据1,2,3,n的平均数是2,∴(1+2+3+n)÷4=2,∴n=2,∴这组数据的方差是:1故选择:D.【点睛】此题考查了平均数和方差的定义,平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.6、B【解析】

先根据题意判断出一次函数的增减性,再根据x1<x1即可得出结论.【详解】∵一次函数y=kx中,k<0,∴函数图象经过二、四象限,且y随x的增大而减小,∵x1<x1,∴y1>y1.故选A.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.7、C【解析】

先根据已知条件求出△ADE∽△ABC,再根据面积的比等于相似比的平方解答即可.【详解】解:∵S△ADE:S四边形DBCE=1:3,∴S△ADE:S△ABC=1:4,又∵DE∥BC,∴△ADE∽△ABC,相似比是1:1,∴AD:AB=1:1.故选:C.【点睛】此题考查相似三角形的判定与性质,解题关键在于求出△ADE∽△ABC8、B【解析】

利用多边形的内角和公式求出n即可.【详解】由题意得:(n-2)×180°=360°,解得n=4;故答案为:B.【点睛】本题考查多边形的内角和,解题关键在于熟练掌握公式.9、C【解析】由题意得,180°(n-2)=120°,解得n=6.故选C.10、C【解析】

方差反映了一组数据的波动大小,方差越大,波动性越大,方差越小,波动越小.选择方差较小的两位.【详解】解:从四个方差看,甲,丁的方差在四个同学中是较小的,方差小成绩发挥稳定,所以应选他们两人去参加比赛.故选:C.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.二、填空题(每小题3分,共24分)11、【解析】【分析】抽签有4种可能的结果,其中抽到甲的只有一种结果,根据概率公式进行计算即可得.【详解】甲、乙、丙、丁四人都有机会跑第一棒,而且机会是均等的,抽签抽到甲跑第一棒有一种可能,所以甲跑第一棒的概率为,故答案为:.【点睛】本题考查了简单的概率计算,用到的知识点为:概率=所求情况数与总情况数之比.12、【解析】试题解析:所以故答案为13、1.1,2,2.1.【解析】分析:一组数据中出现次数最多的数据叫做众数,一组数据中众数不止一个,由此可得出a的值,将数据从小到大排列可得出中位数.详解:1,3,1,1,2,a的众数是a,∴a=1或2或3或1,将数据从小到大排列分别为:1,1,1,2,3,1,1,1,2,2,3,1,1,1,2,3,3,1,1,1,2,3,1,1.故中位数分别为:1.1,2,2.1.故答案为:1.1,2,2.1.点睛:本题考查了众数及中位数的知识,解答本题的关键是掌握众数及中位数的定义,属于基础题.14、:84分【解析】

因为数学期末成绩由考试分数,作业分数,课堂参与分数三部分组成,并按3:2:5的比例确定,所以利用加权平均数的公式即可求出答案.【详解】解:小明的数学期末成绩为=84(分),故答案为84分.【点睛】本题主要考查了加权平均数的概念.平均数等于所有数据的和除以数据的个数.15、k<-5【解析】

根据当k<0时,y随x的增大而减小解答即可.【详解】由题意得k+5<0,∴k<-5.故答案为:k<-5.【点睛】本题考查了正比例函数图象与系数的关系:对于y=kx(k为常数,k≠0),当k>0时,y=kx的图象经过一、三象限,y随x的增大而增大;当k<0时,y=kx的图象经过二、四象限,y随x的增大而减小.16、1.【解析】试题解析:根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,则AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=1,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1.考点:平移的性质.17、.【解析】

已知点O是对角线AC的中点,DE的中点为F,可得OF为△EDG的中位线,根据三角形的中位线定理可得DG=2OF=4;由平行四边形的性质可得AB∥CD,AB=CD,即可得∠EAO=∠GCO,再判定△AOE≌△COG,根据全等三角形的性质可得AE=CG,即可得BE=DG=4,再由BE=3CG即可求得AE=CG=.【详解】∵点O是对角线AC的中点,DE的中点为F,∴OF为△EDG的中位线,∴DG=2OF=4;∵四边形ABCD为平行四边形,∴AB∥CD,AB=CD,∴∠EAO=∠GCO,在△AOE和△COG中,,∴△AOE≌△COG,∴AE=CG,∵AB=CD,∴BE=DG=4,∵BE=3CG,∴AE=CG=.故答案为:.【点睛】本题考查了平行四边形的性质、三角形的中位线定理,利用三角形的中位线定理求得DG=4;是解决问题的关键.18、-1【解析】

根据分式值为0的条件进行求解即可.【详解】由题意得,x+1=0,解得x=-1,故答案为:-1.【点睛】本题考查了分式值为0的条件,熟练掌握分式值为0时,分子为0且分母不为0是解题的关键.三、解答题(共66分)19、(1)见解析;(2)见解析;(3)见解析;【解析】

(1)∵△ABC是等边三角形,∴AB=BC,∠ABD=∠BCE,又∵BD=CE,∴△ABD≌△BCE;(2)△AEF与△BEA相似.由(1)得:∠BAD=∠CBE,又∵∠ABC=∠BAC,∴∠ABE=∠EAF,又∵∠AEF=∠BEA,∴△AEF∽△BEA;(3)BD2=AD•DF.由(1)得:∠BAD=∠FBD,又∵∠BDF=∠ADB,∴△BDF∽△ADB,∴,即BD2=AD•DF.【点睛】本题主要考查等边三角形的性质和全等三角形的判定与性质以及相似三角形的判定和性质等知识点,解答本题的关键是要熟练掌握三角形全等的判定与性质定理.20、【解析】试题分析:(1)直接根据勾股定理求出BC的长度;(2)当△ABP为直角三角形时,分两种情况:①当∠APB为直角时,②当∠BAP为直角时,分别求出此时的t值即可;(3)当△ABP为等腰三角形时,分三种情况:①当AB=BP时;②当AB=AP时;③当BP=AP时,分别求出BP的长度,继而可求得t值.试题解析:(1)在Rt△ABC中,BC2=AB2-AC2=52-32=16,∴BC=4(cm);(2)由题意知BP=tcm,①当∠APB为直角时,点P与点C重合,BP=BC=4cm,即t=4;②当∠BAP为直角时,BP=tcm,CP=(t-4)cm,AC=3cm,在Rt△ACP中,AP2=32+(t-4)2,在Rt△BAP中,AB2+AP2=BP2,即:52+[32+(t-4)2]=t2,解得:t=,故当△ABP为直角三角形时,t=4或t=;(3)①当AB=BP时,t=5;②当AB=AP时,BP=2BC=8cm,t=8;③当BP=AP时,AP=BP=tcm,CP=|t-4|cm,AC=3cm,在Rt△ACP中,AP2=AC2+CP2,所以t2=32+(t-4)2,解得:t=,综上所述:当△ABP为等腰三角形时,t=5或t=8或t=.考点:勾股定理21、(1);(2)150元;425元.【解析】

(1)分类讨论:购买数量不超过5件,购买数量超过5件,根据单价乘以数量,可得函数解析式.(2)把x=3,x=10分别代入(1)中的函数关系式即可求出贷款数.【详解】(1)根据商场的规定,当0<x≤5时,y=50x,当x>5时,y=50×5+(x-5)×50×0.7=35x+75,所以,货款y

(元)与购买数量x

(件)之间的函数关系是y=(x是正整数);(2)当x=3时,y=50×3=150

(元)当x=10时,y=35×10+75=425(元).【点睛】本题考查了一次函数的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.注意分类讨论.22、见解析【解析】

分析:证明:∵∠BAD=∠CAE,∴∠BAE=∠CAD.在△ABE和△ACD中,∵AB=AC,AE=AD,∠BAE=∠CAD,∴△ABE≌△ACD(SAS).∴BE=CD.又∵DE=BC,∴四边形BCDE为平行四边形.如图,连接BD,CE,在△ACE和△ABD中,∵AC=AB,AE=AD,∠CAE=∠BAD,∴△ACE≌△ABD(SAS),∴CE=BD.∴四边形BCED为矩形(对角线相等的平行四边形是矩形).23、(1)见解析;(2)见解析,(-4,2)【解析】

(1)利用网格特点和旋转的旋转画出点A、B、C的对应点A1、B1、C1,从而得到△A1B1C1;

(2)延长OA到A2使A2A=OA,则点A2为点A的对应点,同样方法作出B、C的对应点B2,C2,从而得到△A2B2C2,然后写出A2的坐标.【详解】解:(1)如图,△A1B1C1为所求;(2)如图,△A2B2C2为所作,点A2的坐标分别为(-4,2)【点睛】此题主要考查了旋转变换以及位似变换,正确利用旋转的性质得出对应点位置是解题关键.位似变换:利用以原点为位似中心的对应点的坐标之间的关系写出所求图形各顶点坐标,然后描点即可.24、(1);(2)DF=CE,DF⊥CE.理由见解析;【解析】分析:(1)如图1,先利用勾股定理计算出AG==5,再利用面积法和勾股定理计算出然后证明△ABF≌

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论