河南省洛阳市2024年数学八年级下册期末监测试题含解析_第1页
河南省洛阳市2024年数学八年级下册期末监测试题含解析_第2页
河南省洛阳市2024年数学八年级下册期末监测试题含解析_第3页
河南省洛阳市2024年数学八年级下册期末监测试题含解析_第4页
河南省洛阳市2024年数学八年级下册期末监测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省洛阳市2024年数学八年级下册期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.点A(1,-2)关于x轴对称的点的坐标是()A.(1,-2) B.(-1,2) C.(-1,-2) D.(1,2)2.将一个n边形变成(n+2)边形,内角和将()A.减少180 B.增加180° C.减少360° D.增加360°3.一次函数的图象可能是()A. B. C. D.4.下列数学符号中,属于中心对称图形的是()A. B. C. D.5.下列图形既是轴对称图形,又是中心对称图形的是()A.三角形B.菱形C.角D.平行四边形6.方程x2x的解是()A.x1 B.x11,x20C.x0 D.x11,x207.已知等腰△ABC的两边长分别为2和3,则等腰△ABC的周长为()A.7 B.8 C.6或8 D.7或88.已知点P(a+l,2a-3)关于x轴的对称点在第一象限,则a的取值范围是()A. B. C. D.9.如果,那么等于A.3:2 B.2:5 C.5:3 D.3:510.如图,直线与相交于点P,点P的横坐标为-1,则关于x的不等式的解集在数轴上表示为()A. B.C. D.二、填空题(每小题3分,共24分)11.颖颖同学用20元钱去买方便面35包,甲种方便面每包0.7元,乙种方便面每包0.5元,则她最多可买甲种方便面_____包.12.化简得.13.如图,点D,E分别在△ABC的边AB,AC上,且∠AED=∠ABC,若DE=3,BC=6,AB=8,则AE的长为____.14.已知分式,当x=1时,分式无意义,则a=___________.15.如图,点A的坐标为2,2,则线段AO的长度为_________.16.如图,平行四边形ABCD中,∠A的平分线AE交CD于E,连接BE,点F、G分别是BE、BC的中点,若AB=6,BC=4,则FG的长_________________.17.在函数y=中,自变量x的取值范围是_________.18.如图,在中,,,,把绕边上的点顺时针旋转90°得到,交于点,若,则的长是________.三、解答题(共66分)19.(10分)在平面直角坐标系中,设两数(,是常数,).若函数的图象过,且.(1)求的值:(2)将函数的图象向上平移个单位,平移后的函数图象与函数的图象交于直线上的同一点,求的值;(3)已知点(为常数)在函数的图象上,关于轴的对称点为,函数的图象经过点,当时,求的取值范围.20.(6分)(1)已知,,求的值.(2)若,求的平方根.21.(6分)如图,函数y=2x与y=ax+5的图象相交于点A(m,4).(1)求A点坐标及一次函数y=ax+5的解析式;(2)设直线y=ax+5与x轴交于点B,求△AOB的面积;(3)求不等式2x<ax+5的解集.22.(8分)因式分解:(1);(2).23.(8分)如图,一次函数的图象与反比例函数的图象交于点和点.(1)求,的值;(2)根据图象判断,当不等式成立时,的取值范围是什么?24.(8分)如图,▱ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接DE,BF.判断四边形EBFD的形状,并说明理由.25.(10分)已知王亮家、公园、新华书店在一条直线上,下面的图象反映的过程是:王亮从家跑步去公园,在那里锻炼了一阵后又走到新华书店去买书,然后散步走回家.其中表示时间,表示王亮离家的距离.根据图象回答:(1)公园离王亮家,王亮从家到公园用了;(2)公园离新华书店;(3)王亮在新华书店逗留了;(4)王亮从新华书店回家的平均速度是多少?26.(10分)化简.

参考答案一、选择题(每小题3分,共30分)1、D【解析】

根据关于横轴对称的点,横坐标不变,纵坐标变成相反数进行求解即可.【详解】点P(m,n)关于x轴对称点的坐标P′(m,-n),所以点A(1,-2)关于x轴对称的点的坐标是(1,2),故选D.2、D【解析】

利用多边形的内角和公式即可求出答案.【详解】解:n边形的内角和是(n-2)•180°,n+2边形的内角和是n•180°,因而(n+2)边形的内角和比n边形的内角和大n•180°-(n-2)•180=360°.故选:D.【点睛】本题考查多边形的内角和公式,熟记内角和公式是解题的关键.3、A【解析】

根据一次函数的图象与系数的关系进行解答即可【详解】解:当k>0时,函数图象经过一、二、三象限;当k<0时,函数图象经过二、三、四象限,故A正确.故选:A.【点睛】本题考查的是一次函数的图象,熟知一次函数y=kx+b(k≠0)中,当k<0,b<0时,函数图像经过二、三、四象限是解答此题的关键.4、B【解析】

根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5、B【解析】【分析】根据轴对称图形与中心对称图形的概念进行求解即可.【详解】A、三角形不一定是轴对称图形和中心对称图形,故本选项错误;B、菱形既是轴对称图形又是中心对称图形,故本选项正确;C、角是轴对称图形但不一定是中心对称图形,故本选项错误;D、平行四边形是中心对称图形但不一定是轴对称图形,故本选项错误,故选B.【点睛】本题主要考查了中心对称图形与轴对称图形的概念:判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.6、B【解析】

先变形得一元二次方程的一般形式,再用分解因式法解方程即可.【详解】解:移项,得x2-x=0,原方程即为x(x-1)=0,所以,x=0或x-1=0,所以x11,x20.故选B.【点睛】本题考查了一元二次方程的解法,熟知一元二次方程的四种解法(完全开平方法、配方法、公式法和分解因式法)并能根据方程的特点灵活应用是求解的关键.7、D【解析】

因为等腰三角形的两边分别为2和3,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【详解】当2为底时,三角形的三边为3,2、3可以构成三角形,周长为8;当3为底时,三角形的三边为3,2、2可以构成三角形,周长为1.故选D.【点睛】本题考查了等腰三角形的性质;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.8、B【解析】关于x轴对称的点的坐标,一元一次不等式组的应用.【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”,再根据各象限内的点的坐标的特点列出不等式组求解即可:∵点P(a+1,2a-3)关于x轴的对称点在第一象限,∴点P在第四象限.∴.解不等式①得,a>-1,解不等式②得,a<,所以,不等式组的解集是-1<a<.故选B.9、B【解析】

根据比例的基本性质(两内项之积等于两外项之积)和合比定理【如果a:b=c:d,那么(a+b):b=(c+d):d(b、d≠0)】解答并作出选择.【详解】∵=的两个内项是b、2,两外项是a、3,∴,∴根据合比定理,得,即;同理,得=2:5.故选B.【点睛】本题考查比例的性质,熟练掌握比例的基本性质是解题关键.10、A【解析】

观察函数图象得到当x>-1时,函数y=x+b的图象都在y=kx-1的图象上方,所以不等式x+b>kx-1的解集为x>-1,然后根据用数轴表示不等式解集的方法对各选项进行判断.【详解】当x>-1时,x+b>kx-1,即不等式x+b>kx-1的解集为x>-1.故选A.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了在数轴上表示不等式的解集.二、填空题(每小题3分,共24分)11、1【解析】

设可购买甲种方便面x包,则可购买乙种方便面(35﹣x)包,根据总价=单价×数量结合总价不超过20元,即可得出关于x的一元一次不等式,解之取其中的最大整数是解题的关键.【详解】设可购买甲种方便面x包,则可购买乙种方便面(35﹣x)包,根据题意得:0.7x+0.5(35﹣x)≤20,解得:x≤1.5,∵x为整数,∴x=1.故答案为1.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.12、.【解析】试题分析:原式=.考点:分式的化简.13、1【解析】

根据已知条件可知△ADE∽△ACB,再通过两三角形的相似比可求出AE的长.【详解】解:∵∠AED=∠ABC,∠BAC=∠EAD∴△AED∽△ABC∴又∵DE=3,BC=6,AB=8∴AE=1.14、1【解析】

把x=1代入分式,根据分式无意义得出关于a的方程,求出即可【详解】解:把x=1代入得:,此时分式无意义,

∴a-1=0,

解得a=1.

故答案为:1.【点睛】本题考查了分式无意义的条件,能得出关于a的方程是解此题的关键.15、2【解析】

根据勾股定理计算即可.【详解】解:∵点A坐标为(2,2),∴AO=22故答案为:22【点睛】本题考查了勾股定理的运用和点到坐标轴的距离:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.16、1【解析】

先由平行四边形的性质以及角平分线的定义判断出∠DAE=∠DEA,继而求得CE的长,再根据三角形中位线定理进行求解即可.【详解】∵四边形ABCD是平行四边形,∴AD=BC=4,DC=AB=6,DC//AB,∴∠EAB=∠AED,∵∠EAB=∠DAE,∴∠DAE=∠DEA,∴DE=AD=4,∴CE=CD-DE=6-4=2,∵点F、G分别是BE、BC的中点,∴FG=EC=1,故答案为1.【点睛】本题考查了平行四边形的性质,等腰三角形的判定,三角形中位线定理,熟练掌握相关内容是解题的关键.17、x≤1【解析】

根据二次根式的性质列出不等式,求出不等式的取值范围即可.【详解】若使函数y=有意义,∴1−x≥0,即x≤1.故答案为x≤1.【点睛】本题主要考查了函数自变量取值范围的知识点,注意:二次根式中的被开方数必须是非负数,否则二次根式无意义.18、2【解析】

在Rt△ACB中,,由题意设BD=B′D=AE=x,由△EDB′∽△ACB,可得,推出,可得,求出x即可解决问题。【详解】解:在中,,由题意设,∵,∴,∴,∴,∴,∴,故答案为2.【点睛】本题考查旋转变换、直角三角形的性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是学会理由参数构建方程解决问题,所以中考常考题型.三、解答题(共66分)19、(1);(2);(3)或【解析】

(1)根据题意列方程组即可得到结论;(2)根据平移的性质得到平移后的函数的解析式为y=-x+2+h,得到交点的坐标为(1,4),把(1,4)代入y=-x+2+h即可得到结论;(3)由点M(a,b)(a,b为常数)在函数y1=-x+m的图象上,得到M(a,2-a),求得点M(a,b)关于y轴的对称点N(-a,2-a),于是得到y3=x+2,解不等式即可得到结论.【详解】解:(1)的图象过,∴又,;(2)将的图象向上平移后为,与函数的图象交直线于点(1,4),将(1,4)代入,得:,解得:.(3)∵点M(a,b)(a,b为常数)在函数y1=-x+m的图象上,∴M(a,2-a),∴点M(a,b)关于y轴的对称点N(-a,2-a),∵函数y3=kx+m(k≠1)的图象经过点N,,由,代入得:,当x>1时,解得:x>2,当x<1时,解得:x<1,综上所述,x的取值范围为:x>2或x<1.【点睛】本题考查了反比例函数与一次函数的交点问题,正确的理解题意,熟练掌握反比例函数与一次函数的关系是解题的关键.注意掌握数形结合的思想进行解题.20、(1);(2)【解析】

(1)将因式分解,然后将a、b的值代入求值即可;(2)根据二次根式有意义的条件,即可求出x和y的值,然后代入求值即可.【详解】解:(1)将,代入,得原式====(2)由题意可知:解得∴x=5将x=5代入中,解得:y=2∴的平方根为:【点睛】此题考查的是因式分解、二次根式的混合运算、二次根式有意义的条件和求平方根,掌握因式分解的方法、二次根式的运算法则、二次根式有意义的条件和平方根的定义是解决此题的关键.21、(1)y=-x+5;(2)△AOB的面积为21;(3)x<2.【解析】

(1)将A(m,4)代入y=2x,得A点坐标为(2,4),再代入y=ax+5中即可得到解析式,(2)求出B的坐标,根据A,B的坐标表示出△ABC的底和高即可解题,(3)根据图像找点A的左侧即可解题.【详解】(1)∵函数y=2x的图象过点A(m,4),∴4=2m,解得m=2,∴A点坐标为(2,4).∵y=ax+5的图象过点A,∴2a+5=4,解得a=-,∴一次函数y=ax+5的解析式为y=-x+5;(2)∵y=-x+5,∴y=1时,-x+5=1.解得x=11,∴B(11,1),OB=11,∴△AOB的面积=×11×4=21;(3)由图形可知,不等式2x<ax+5的解集为x<2.【点睛】本题考查了一次函数和正比例函数的交点、解析式的求法和增减性问题,综合性较大,中等难度,熟悉一次函数的性质是解题关键.22、(1);(2)【解析】

(1)先提取公因式-x,再用完全平方公式分解即可;(2)先提取公因式3x,再用完全平方公式分解即可.【详解】解:(1)==;(2)==【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.23、(1),;(2)或.【解析】

(1)利用待定系数法即可解决问题;(2)观察图象写出反比例函数图象在一次函数的图象上方的x的取值范围即可.【详解】解:(1)把A(1,1)代入中,得到m=1,∴反比例函数的解析式为y=,把B(n,1)代入y=中,得到n=1;(2)∵A(1,1),B(1,1),观察图象可知:不等式成立时,x的取值范围是0<x≤1或x≥1.【点睛】本题考查一次函数与反比例函数的交点问题,解题的关键是灵活应用待定系数法确定函数解析式,学会利用图象法解决取值范围问题,属

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论