版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省无锡市长泾片2024届八年级下册数学期末经典试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.已知,顺次连接矩形各边的中点,得到一个菱形,如图1;再顺次连接菱形各边的中点,得到一个新的矩形,如图2;然后顺次连接新的矩形各边的中点得到一个新的菱形,如图3;……如此反复操作下去,则第2018个图形中直角三角形的个数有()A.2018个 B.2017个 C.4028个 D.4036个2.若将(a、b均为正数)中的字母a、b的值分别扩大为原来的3倍,则分式的值()A.扩大为原来的3倍 B.缩小为原来的C.不变 D.缩小为原来的3.如图1是由个全等的边长为的正方形拼成的图形,现有两种不同的方式将它沿着虚线剪开,甲将它分成三块,乙将它分成四块,各自要拼一个面积是的大正方形,则()A.甲、乙都可以 B.甲可以,乙不可以C.甲不可以,乙可以 D.甲、乙都不可以4.下列命题是假命题的是()A.两直线平行,同位角相等 B.两组对角分别相等的四边形是平行四边形C.若,则 D.若,则5.某百货商场试销一批新款衬衫,一周内销售情况如表所示。该商场经理想要了解哪种型号最畅销,那么他最关注的统计量是()型号383940414243数量(件)23313548298A.众数 B.中位数 C.平均数 D.方差6.如图的阴影部分是两个正方形,图中还有两个直角三角形和一个大正方形,则阴影部分的面积是()A.16 B.25 C.144 D.1697.在函数的图象上的点是()A.(-2,12) B.(2,-12) C.(-4,-6) D.(4,-6)8.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律。则第(6)个图形中面积为1的正方形的个数为()A.20 B.25 C.35 D.279.直线:为常数的图象如图,化简:A.3 B. C. D.510.函数y=xx+3的自变量取值范围是(A.x≠0 B.x>﹣3 C.x≥﹣3且x≠0 D.x>﹣3且x≠0二、填空题(每小题3分,共24分)11.在我国古代数学著作《九章算术》中记载了一道有趣的数学问题:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问水深、葭长备几何?”这个数学问题的意思是说:“有一个水池,水面是一个边长为丈(丈尺)的正方形,在水池正中央长有一根芦苇,芦苇露出水面尺.如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各是多少?”设这个水池的深度是尺,根据题意,可列方程为__________.12.化简:=.13.因式分解:m2n+2mn2+n3=_____.14.在一次“人与环境”知识竞赛中,共有25个题,每题四个答案,其中只有一个答案正确,每选对一题得4分,不选或选错倒扣2分,如果一个学生在本次竞赛中得分不低于60分,那么他至少要答对______题15.若与最简二次根式是同类二次根式,则__________.16.当a=______时,最简二次根式与是同类二次根式.17.不等式组的解集是_________.18.在中,,则___.三、解答题(共66分)19.(10分)某工厂甲、乙两人加工同一种零件,每小时甲比乙多加工10个这种零件,甲加工150个这种零件所用的时间与乙加工120个这种零件所用的时间相等,(1)甲、乙两人每小时各加工多少个这种零件?(2)该工厂计划加工920个零件,甲参与加工这批零件不超过12小时,则乙至少加工多少小时才能加工完这批零件?20.(6分)已知一个一次函数的图象与一个反比例函数的图象交于点.分别求出这两个函数的表达式;在同一个平面直角坐标系中画出这两个函数的图象,根据图象回答:当取何值时,一次函数的值大于反比例函数的值?求平面直角坐标中原点与点构成的三角形的面积.21.(6分)(探究与证明)在正方形ABCD中,G是射线AC上一动点(不与点A、C重合),连BG,作BH⊥BG,且使BH=BG,连GH、CH.(1)若G在AC上(如图1),则:①图中与△ABG全等的三角形是.②线段AG、CG、GH之间的数量关系是.(2)若G在AC的延长线上(如图2),那么线段AG、CG、BG之间有怎样的数量关系?写出结论并给出证明;(应用)(3)如图3,G在正方形ABCD的对角线CA的延长线上,以BG为边作正方形BGMN,若AG=2,AD=4,请直接写出正方形BGMN的面积.22.(8分)先化简,再求值,其中x=1.23.(8分)综合与探究问题情境:在综合实践课上,李老师让同学们根据如下问题情境,写出两个数学结论:如图(1),正方形ABCD的对角线交于点O,点O又是正方形OEFG的一个顶点(正方形OEFG的边长足够长),将正方形OEFG绕点O做旋转实验,OE与BC交于点M,OG与DC交于点N.“兴趣小组”写出的两个数学结论是:①S△OMC+S△ONC=S正方形ABCD;②BM1+CM1=1OM1.问题解决:(1)请你证明“兴趣小组”所写的两个结论的正确性.类比探究:(1)解决完“兴趣小组”的两个问题后,老师让同学们继续探究,再提出新的问题;“智慧小组“提出的问题是:如图(1),将正方形OEFG在图(1)的基础上旋转一定的角度,当OE与CB的延长线交于点M,OG与DC的延长线交于点N,则“兴趣小组”所写的两个结论是否仍然成立?请说明理由.24.(8分)如图,点,在上,,,,试判断与有怎样的数量和位置关系,并说明理由.25.(10分)计算题:(1);(2);(3);(4).26.(10分)某店代理某品牌商品的销售.已知该品牌商品进价每件40元,日销售y(件)与销售价x(元/件)之间的关系如图所示(实线),付员工的工资每人每天100元,每天还应支付其它费用150元.(1)求日销售y(件)与销售价x(元/件)之间的函数关系式;(2)该店员工人共3人,若某天收支恰好平衡(收入=支出),求当天的销售价是多少?
参考答案一、选择题(每小题3分,共30分)1、D【解析】
写出前几个图形中的直角三角形的个数,并找出规律,当n为奇数时,三角形的个数是2(n+1),当n为偶数时,三角形的个数是2n,根据此规律求解即可.【详解】第1,2个图形各有4个直角三角形;第3,4个图形各有8个直角三角形;第5,6个图形各有12个直角三角形……第2017,2018个图形各有4036个直角三角形,故选:D.【点睛】本题主要考查了中点四边形、图形的变化,根据前几个图形的三角形的个数,观察出与序号的关系式解题的关键.2、D【解析】
根据分式的基本性质,可得答案【详解】将分式(a,b均为正数)中a,b的值分别扩大为原来的3倍,则分式的值缩小为原来的故选D.【点睛】本题考查分式的基本性质,掌握运算法则是解题关键.3、A【解析】
直接利用图形的剪拼方法结合正方形的性质分别分析得出答案.【详解】解:如图所示:可得甲、乙都可以拼一个面积是5的大正方形.故选:.【点睛】此题主要考查了图形的剪拼以及正方形的性质,正确应用正方形的性质是解题关键.4、D【解析】
根据平行线的性质、平行四边形的判定、实数的性质即可判断.【详解】A.两直线平行,同位角相等,正确B.两组对角分别相等的四边形是平行四边形,正确C.若,则,正确D.若>0,则,错误故选D.【点睛】此题主要考查命题的真假,解题的关键是熟知根据平行线的性质、平行四边形的判定、实数的性质.5、A【解析】
平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.既然是对该品牌衬衫的尺码数销售情况作调查,那么应该关注那种尺码销的最多,故值得关注的是众数.【详解】由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故选A.【点睛】本题考查了统计的有关知识,熟知平均数、中位数、众数、方差的意义是解决问题的关键.6、B【解析】
两个阴影正方形的面积和等于直角三角形另一未知边的平方,利用勾股定理即可求出.【详解】两个阴影正方形的面积和为132-122=25,所以B选项是正确的.【点睛】本题主要考查了正方形的面积以及勾股定理的应用,推知“正方形的面积和等于直角三角形另一未知边的平方”是解题的难点.7、C【解析】
根据横坐标与纵坐标的乘积为24即可判断.【详解】解:∵函数的图象上的点的横坐标与纵坐标的乘积为24,又∵-2×12=-24,2×(-12)=-24,-4×(-6)=24,4×(-6)=-24,∴(-4,-6)在的图象上,故选:C.【点睛】本题考查反比例函数图象上的点的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.8、D【解析】
第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+n+1=个,进一步求得第(6)个图形中面积为1的正方形的个数即可.【详解】第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)=个,则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个。故选:D【点睛】此题考查规律型:图形的变化类,解题关键在于找到规律9、C【解析】
先从一次函数的图象判断出的正负,然后再化简原代数式.【详解】由直线为常数的图象可得:,所以,故选:C.【点睛】本题主要考查一次函数的图象,关键是根据二次根式的性质及其化简,绝对值的化简解答.10、B【解析】
由题意得:x+1>0,解得:x>-1.故选B.二、填空题(每小题3分,共24分)11、【解析】试题解析:设由题意可得:.故答案为.12、2【解析】
根据算术平方根的定义,求数a的算术平方根,也就是求一个正数x,使得x2=a,则x就是a的算术平方根,特别地,规定0的算术平方根是0.【详解】∵22=4,∴=2.【点睛】本题考查求算术平方根,熟记定义是关键.13、n(m+n)1【解析】
先提公因式n,再利用完全平方公式分解因式即可.【详解】解:m1n+1mn1+n3=n(m1+1mn+n1)=n(m+n)1.故答案为:n(m+n)1【点睛】此题考查提公因式法与公式法的综合运用,解题关键在于掌握运算法则.14、19【解析】设他至少应选对x道题,则不选或错选为25−x道题.依题意得4x−2(25−x)⩾60得x⩾18又∵x应为正整数且不能超过25所以:他至少要答对19道题.故答案为19.15、3【解析】
先化简,然后根据同类二次根式的概念进行求解即可.【详解】=2,又与最简二次根式是同类二次根式,所以a=3,故答案为3.【点睛】本题考查了最简二次根式与同类二次根式,熟练掌握相关概念以及求解方法是解题的关键.16、1.【解析】
同类二次根式是指化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.【详解】解:∵最简二次根式与是同类二次根式,∴a﹣2=10﹣2a,解得:a=1故答案为:1.【点睛】本题考查同类二次根式.17、x>1【解析】
求出每个不等式的解集,根据找不等式组解集的规律找出即可.【详解】∵解不等式x-1≥0得:x≥1,
解不等式4-1x<0得:x>1,
∴不等式组的解集为x>1,
故答案是:x>1.【点睛】考查了解一元一次不等式和解一元一次不等式组的应用,解此题的关键是能根据不等式的解集找出不等式组的解集.18、.【解析】
根据平行四边形的性质可得:∠A=∠C,∠A+∠B=180°;再根据∠A+∠C=120°计算出∠A的度数,进而可算出∠B的度数.【详解】四边形是平行四边形,,,,,.故答案为:.【点睛】本题是一道有关平行四边形的题目,掌握平行四边形的性质是解题关键.三、解答题(共66分)19、(1)甲每小时加工零件50个,乙每小时加工零件40个(2)乙至少加工8天才能加工完这批零件.【解析】
(1)根据“甲加工150个零件所用的时间与乙加工120个零件所用的时间相等”可得出相等关系,从而只需不是出™各自的时间就可以了;(2)根据题目条件列出不等式求出加工天数.【详解】解:(1)设乙每小时加工零件个,则甲每小时加工零件个由题可得:解得:经检验是原方程的解,则答:甲每小时加工零件50个,乙每小时加工零件40个.(2)设乙至少加工天才能加工完这批零件,则解之得:答:乙至少加工8天才能加工完这批零件.【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.20、(1),;(2)图见详解,或;(3).【解析】
(1)设反比例的函数解析式为,一次函数的解析式为,将点P代入可得k值,将点Q代入可得m值,将点P、Q代入求解即可;(2)描点、连线即可画出函数的图象,当一次函数的图象在反比例函数图象的上方时,一次函数的值大于反比例函数的值,由此可确定x的取值;(3)连接PO,QO,设直线与y轴交于点M,由求解.【详解】解:(1)设反比例的函数解析式为,一次函数的解析式为,将点代入得,解得,将点代入得,将点,代入得:,解得所以一次函数的表达式为,反比例函数的表达式为;(2)函数和的图象如图所示,由图象可得,当或时,一次函数的值大于反比例函数的值;(3)如图,连接PO,QO,设直线与y轴交于点M,直线与y轴的交点坐标M(0,-1),即,点P到y轴的距离为2,点Q到y轴的距离为1,,所以平面直角坐标中原点与点构成的三角形的面积为.【点睛】本题考查了一次函数与反比例函数的综合,涉及了待定系数法求函数解析式、画函数图象、根据函数图象及函数值的大小确定自变量的取值范围、围成的三角形的面积,熟练掌握待定系数法及运用数形结合的数学思想是解题的关键.21、(1)①△CBH,②AG1+CG1=GH1(1)10+8【解析】
探究与证明(1)①由题意可得AB=BC,BG=BH,∠ABG=∠CBH可证△ABG≌△BCH②由△ABG≌△BCH可得AG=CH,∠ACH=90°可得AG、CG、GH之间的数量关系.(1)连接CH,可证△ABG≌△BCH,可得△CHG是直角三角形,则AG1+CG1=GH1,且HG1=BG1+BH1=1BG1,可得线段AG、CG、BG之间.应用:(3)连接BD交AC于O,由正方形ABCD可得AC⊥BD,AO=BO=CO=1,则根据正方形GBMN的面积=BG1=GO1+BO1.可求正方形GBMN的面积.【详解】解:探究与证明:(1)①△CBH,②AG1+CG1=GH1理由如下:∵ABCD是正方形∴AB=CB,∠ABC=90°,∠BAC=∠BCA=45°又∵GB⊥BH∴∠ABG=∠CBH且BG=BH,AB=BC∴△ABG≌△BCH∴∠BAC=∠BCH=45°,AG=CH∴∠GCH=90°在Rt△GCH中,CH1+CG1=GH1∴AG1+CG1=GH1(1)如图1,连CH∵四边形ABCD是正方形∴∠ABC=90°,AB=BC∵∠GBH=90°∴∠ABC+∠GBC=∠GBH+∠GBC即:∠ABG=∠CBH又∵BH=BG∴△ABG≌△CBH∴AG=CH,∠BCH=∠BAC=45°∴∠ACH=∠ACB+∠BCH=45°+45°=90°∴AG⊥CH∴CH1+CG1=GH1∴AG1+CG1=GH1∵HG1=BG1+BH1=1BG1∴AG1+CG1=1BG1应用:(3)如图连接BD交AC于O∵四边形ABCD是正方形,AD=4,∴AC=4,BO=AO=DO=CO=1,AC⊥BD,∴BG1=GO1+BO1,∵S正方形GBNM=BG1=GO1+BO1=(1+1)1+(1)1=10+8.【点睛】本题考查了四边形的综合题,正方形的性质,全等三角形的判定和性质,灵活运用这些性质解决问题是本题关键.22、;.【解析】
直接将括号里面通分进而利用分式的混合运算法则计算得出答案.【详解】解:原式=,当x=1时,原式=.【点睛】本题考查的知识点是分式的混合运算——化简求值,熟练掌握分式的运算顺序以及运算法则是解此题的关键.23、(1)详见解析;(1)结论①不成立,结论②成立,理由详见解析.【解析】
(1)①利用正方形的性质判断出△BOM≌△CON,利用面积和差即可得出结论;②先得出OM=ON,BM=CN,再用勾股定理即可得出结论;(1)同(1)的方法即可得出结论.【详解】解:(1)①∵正方形ABCD的对角线相交于O,∴S△BOC=S正方形ABCD,OB=OC,∠BOC=90°,∠OBM=∠OCN,∵四边形OEFG是正方形,∴∠MON=90°,∴∠BOC﹣∠MOC=∠MON﹣∠MOC,∴∠BOM=∠COM,∴△BOM≌△CON,∴S△BOM=S△CON,∴S△OMC+S△ONC=S△OMC+S△BOM=S正方形ABCD;②由①知,△BOM≌△CON,∴OM=ON,BM=CN,在Rt△MCN中,MN1=CM1+CN1=CM1+BM1,在Rt△MON中,MN1=OM1+ON1=1OM1,∴BM1+CM1=1OM1;(1)结论①不成立,理由:∵正方形ABCD的对角线相交于O,∴S△BOC=S正方形ABCD,OB=BD,OC=AC,AC=BD,AC⊥BD,∠ABC=∠BCD=90°,AC平分∠BCD,BD平分∠ABC,∴OB=OC,∠BOC=90°,∠OBC=∠OCD=45°,∴∠OBM=∠OCN=135°,∵四边形OEFG是正方形,∴∠MON=90°,∴∠BOM=∠CON,∴△BOM≌△CON,∴S△BOM=S△CON,∴S△OMC﹣S△BOM=S△OMC﹣S△CON=S△BOC=S正方形ABCD,∴结论①不成立;结论②成立,理由:如图(1)连接MN,∵△BOM≌△CON,∴OM=ON,BM=CN,在Rt△MCN中,MN1=CM1+CN1=CM1+BM1,在Rt△MON中,MN1=OM1+ON1=1OM1,∴BM1+CM1=1OM1,∴结论②成立.【点睛】本题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024规范化房产租赁中介服务协议
- 2024年商业楼宇物业委托管理协议
- 车辆保养与维修服务协议模板2024
- 董事任用协议:2024年企业专用
- 多功能的电梯综合维修服务协议
- 2024年限额小型建筑工程协议范本
- 2024年工程用重型机械租赁服务协议
- 2024个人销售代理业务协议范例
- 2024年特定债务转让三方协议模板
- 2024高强度纸箱销售协议样本
- 2024年xx村10月驻村工作总结
- 手机游戏独家代理协议模板
- 2023年陇南康县招聘专职社区工作者考试真题
- 2024年审计工作总结(六篇)
- 河南省周口市川汇区2024-2025学年八年级上学期期中质量监测地理试卷
- 福建复旦大学附属中山医院厦门医院招聘编外真题
- 中国在线亲子游行业产业链全景图谱、领先企业分析及投资前景预测报告
- 2024年新华社招聘应届毕业生及留学回国人员历年高频难、易错点500题模拟试题附带答案详解
- 中国航空学会-2024低空经济场景白皮书
- 23J916-1 住宅排气道(一)
- 2024年新人教版一年级数学上册第4单元《第1课时 10的再认识》课件
评论
0/150
提交评论