版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省牡丹江中学2024年八年级数学第二学期期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列四种标志图案中,既是轴对称图形又是中心对称图形的是()A. B.C. D.2.在平行四边形中,对角线、相交于点,若,则=()A. B. C. D.3.下列式子一定成立的是()A. B. C. D.4.12名同学参加了学校组织的经典诵读比赛的个人赛(12名同学成绩各不相同),按成绩取前6名进入决赛,如果小明知道自己的成绩后,要判断自己能否进入决赛,他需要知道这12名同学成绩的()A.众数 B.方差 C.中位数 D.平均数5.下列等式中,不成立的是A. B.C. D.6.上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y与时间t之间的函数关系的大致图象是()A. B. C. D.7.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是A.(0,0) B.(0,1) C.(0,2) D.(0,3)8.一次函数y=3x-2的图象不经过().A.第一象限B.第二象限C.第三象限D.第四象限9.如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG的长为()A.1 B. C. D.210.下列计算正确的是()A.=2 B. C. D.11.如图,在▱ABCD中,∠A=130°,则∠C-∠B的度数为(
)A.90° B.80° C.70° D.60°12.小东一家自驾车去某地旅行,手机导航系统推荐了两条线路,线路一全程75km,线路二全程90km,汽车在线路二上行驶的平均时速是线路一上车速的1.8倍,线路二的用时预计比线路一用时少半小时,如果设汽车在线路一上行驶的平均速度为xkm/h,则下面所列方程正确的是()A. B. C. D.二、填空题(每题4分,共24分)13.一次函数y=-x-1的图象不经过第_____象限.14.命题“若,则.”的逆命题是_____命题.(填“真”或“假”)15.如图,在的两边上分别截取、,使;分别以点、为圆心,长为半径作弧,两弧交于点,连接、.若,四边形的面积为.则的长为______.16.一组数据:1,2,1,0,2,a,若它们的众数为1,则这组数据的平均数为_______.17.直线y=3x-2不经过第________________象限.18.如图,垂直平分线段于点的平分线交于点,连结,则∠AEC的度数是.三、解答题(共78分)19.(8分)如图,在矩形ABCD中,E是对角线BD上一点(不与点B、D重合),过点E作EF∥AB,且EF=AB,连接AE、BF、CF。(1)若DE=DC,求证:四边形CDEF是菱形;(2)若AB=,BC=3,当四边形ABFE周长最小时,四边形CDEF的周长为__________。20.(8分)如图,将矩形ABCD置于平面直角坐标系中,其中AD边在x轴上,AB=2,直线MN:y=x﹣4沿x轴的负方向以每秒1个单位的长度平移,设在平移过程中该直线被矩形ABCD的边截得的线段长度为m,平移时间为t,m与t的函数图象如图2所示.(1)点A的坐标为,矩形ABCD的面积为;(2)求a,b的值;(3)在平移过程中,求直线MN扫过矩形ABCD的面积S与t的函数关系式,并写出自变量t的取值范围.21.(8分)“立定跳远”是我市初中毕业生体育测试项目之一.测试时,记录下学生立定跳远的成绩,然后按照评分标准转化为相应的分数,满分10分.其中男生立定跳远的评分标准如下:注:成绩栏里的每个范围,含最低值,不含最高值.成绩(米)
…
1.80~1.86
1.86~1.94
1.94~2.02
2.02~2.18
2.18~2.34
2.34~
得分(分)
…
5
6
7
8
9
10
某校九年级有480名男生参加立定跳远测试,现从中随机抽取10名男生测试成绩(单位:分)如下:1.962.382.562.042.342.172.602.261.872.32请完成下列问题:(1)求这10名男生立定跳远成绩的极差和平均数;(2)求这10名男生立定跳远得分的中位数和众数;(3)如果将9分(含9分)以上定为“优秀”,请你估计这480名男生中得优秀的人数.22.(10分)在一个不透明的盒子里装有只有颜色不同的黑、白两种球共50个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:摸到球的次数10020030050080010003000摸到白球的次数651241783024815991803摸到白球的概率0.650.620.5930.6040.6010.5990.601(1)请估计当很大时,摸到白球的频率将会接近______;(精确到0.1);(2)假如随机摸一次,摸到白球的概率P(白球)=______;(3)试估算盒子里白色的球有多少个?23.(10分)已知等腰三角形的两边长分别为a,b,且a,b满足|2a-3b+5|+(2a+3b-13)2=0,求此等腰三角形的周长.24.(10分)某工人为一客户制作一长方形防盗窗,为了牢固和美观,设计如图所示,中间为三个菱形,其中左右为两个全等的大菱形,中间为一个小菱形,竖着的铁棍的间距是相等的,尺寸如图所示(单位:m),工人师傅要做这样的一个防盗窗,总共需要多长的铁棍(不计损耗?)25.(12分)已知y与x-1成正比例,且当x=3时,y=4.(1)写出y与x之间的函数表达式;(2)当x=-2时,求y的值;(3)当y=0时,求x的值26.在太空种子种植体验实践活动中,为了解“宇番2号”番茄,某校科技小组随机调查60株番茄的挂果数量x(单位:个),并绘制如下不完整的统计图表:“宇番2号”番茄挂果数量统计表挂果数量x(个)
频数(株)
频率
25≤x<35
6
0.1
35≤x<45
12
0.2
45≤x<55
a
0.25
55≤x<65
18
b
65≤x<75
9
0.15
请结合图表中的信息解答下列问题:(1)统计表中,a=,b=;(2)将频数分布直方图补充完整;(3)若绘制“番茄挂果数量扇形统计图”,则挂果数量在“35≤x<45”所对应扇形的圆心角度数为°;(4)若所种植的“宇番2号”番茄有1000株,则可以估计挂果数量在“55≤x<65”范围的番茄有株.
参考答案一、选择题(每题4分,共48分)1、B【解析】
根据轴对称图形和中心对称图形的意义逐个分析即可.【详解】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,是中心对称图形;C、不是轴对称图形,是中心对称图形;D、不是轴对称图形,不是中心对称图形.故选B.【点睛】考核知识点:理解轴对称图形和中心对称图形的定义.2、D【解析】
根据平行四边形的性质即可得到结论.【详解】解:∵四边形ABCD是平行四边形,
∴S△AOB=S四边形ABCD=×24=6,
故选:D.【点睛】本题考查了平行四边形的性质,熟练掌握平行四边形的性质是解题的关键.3、D【解析】
根据平方根、二次根式的加法及二次根式有意义的条件即可得到答案.【详解】A.因为不知道a是否为正数,所以不能得到;B.因为不知道a,b是否同为正数或负数,所以不能得到;C.因为,所以错误;D.因为,所以正确.故选择D.【点睛】本题考查平方根、二次根式的加法及二次根式有意义的条件,解题的关键是掌握平方根、二次根式的加法及二次根式有意义的条件.4、C【解析】
参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩与全部成绩的中位数的大小即可.【详解】由于总共有12个人,且他们的分数互不相同,要判断是否进入前6名,只要把自己的成绩与中位数进行大小比较,故应知道中位数的多少,故选C.【点睛】本题考查了统计量的选择,包括平均数、中位数、众数、方差等,正确理解和掌握各自的意义是解题的关键.5、D【解析】
根据不等式的性质,对选项进行求解即可.【详解】解:、,故成立,不合题意;、,故成立,不合题意;、,故成立,不合题意;、,故不成立,符合题意.故选:.【点睛】本题考查不等式,熟练掌不等式的性质及运算法则是解题关键.6、B【解析】分析:根据题意出教室,离门口近,返回教室离门口远,在教室内距离不变,速快跑距离变化快,可得答案.详解:根据题意得,函数图象是距离先变短,再变长,在教室内没变化,最后迅速变短,B符合题意;
故选B.点睛:本题考查了函数图象,根据距离的变化描述函数是解题关键.7、D【解析】
解:作B点关于y轴对称点B′点,连接AB′,交y轴于点C′,
此时△ABC的周长最小,
∵点A、B的坐标分别为(1,4)和(3,0),
∴B′点坐标为:(-3,0),则OB′=3过点A作AE垂直x轴,则AE=4,OE=1
则B′E=4,即B′E=AE,∴∠EB′A=∠B′AE,
∵C′O∥AE,
∴∠B′C′O=∠B′AE,∴∠B′C′O=∠EB′A∴B′O=C′O=3,
∴点C′的坐标是(0,3),此时△ABC的周长最小.
故选D.8、B【解析】
因为k=3>0,b=-2<0,根据一次函数y=kx+b(k≠0)的性质得到图象经过第一、三象限,图象与y轴的交点在x轴下方,于是可判断一次函数y=3x-2的图象不经过第二象限.【详解】对于一次函数y=3x-2,∵k=3>0,∴图象经过第一、三象限;又∵b=-2<0,∴一次函数的图象与y轴的交点在x轴下方,即函数图象还经过第四象限,∴一次函数y=3x-2的图象不经过第二象限.故选B.【点睛】本题考查了一次函数y=kx+b(k≠0)的性质:当k<0,图象经过第二、四象限,y随x的增大而减小;当k>0,经图象第一、三象限,y随x的增大而增大;当b>0,一次函数的图象与y轴的交点在x轴上方;当b<0,一次函数的图象与y轴的交点在x轴下方.9、C【解析】试题解析:设,因为,,所以,在与中,所以∽,那么,,则,解得,故本题应选C.10、C【解析】
根据二次根式的性质与二次根式的乘除运算法则逐项进行计算即可得.【详解】A.=4,故A选项错误;B.与不是同类二次根式,不能合并,故B选项错误;C.,故C选项正确;D.=,故D选项错误,故选C.【点睛】本题考查了二次根式的化简、二次根式的加减运算、乘除运算,解题的关键是掌握二次根式的性质与运算法则.11、B【解析】
根据平行四边形的性质求出∠B和∠C的度数,即可得到结论.【详解】解:∵四边形ABCD是平行四边形,AD∥BC,则∠B=180°-∠A=180°-130°=50°.又∵∠C=∠A=130°,∴故∠C-∠B=130°-50°=80°.故选B.【点睛】本题考查了平行四边形的性质.熟练掌握平行四边形的性质是解答本题的关键.12、A【解析】
设汽车在线路一上行驶的平均速度为xkm/h,则在线路二上行驶的平均速度为1.8xkm/h,根据线路二的用时预计比线路一用时少半小时,列方程即可.【详解】设汽车在线路一上行驶的平均速度为xkm/h,则在线路二上行驶的平均速度为1.8xkm/h,由题意得:,故选A.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是,读懂题意,设出未知数,找出合适的等量关系,列出方程.二、填空题(每题4分,共24分)13、一.【解析】
先根据一次函数y=-x-1中k=-,b=-1判断出函数图象经过的象限,进而可得出结论.【详解】解:∵一次函数y=-x-1中k=-<0,b=-1<0,∴此函数的图象经过二、三、四象限,不经过第一象限.故答案为:一.【点睛】本题考查一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0,b<0时,函数图象经过二、三、四象限.14、假【解析】
写出该命题的逆命题后判断正误即可.【详解】解:命题“若,则.”的逆命题是若a>b,则,例如:当a=3,b=-2时错误,为假命题,
故答案为:假.【点睛】本题考查了命题与定理的知识,解题的关键是交换命题的题设写出该命题的逆命题.15、1【解析】
根据作法判定出四边形OACB是菱形,再根据菱形的面积等于对角线乘积的一半列式计算即可得解.【详解】解:根据作图,AC=BC=OA,
∵OA=OB,
∴OA=OB=BC=AC,
∴四边形OACB是菱形,
∵AB=2cm,四边形OACB的面积为1cm2,
∴AB•OC=×2×OC=1,
解得OC=1cm.
故答案为:1.【点睛】本题考查了菱形的判定与性质,菱形的面积等于对角线乘积的一半的性质,判定出四边形OACB是菱形是解题的关键.16、.【解析】
根据众数为1,求出a的值,然后根据平均数的概念求解:∵众数为1,∴a=1.∴平均数为:.考点:1.众数;2.平均数.17、二【解析】
根据已知求得k,b的符号,再判断直线y=3x-2经过的象限.【详解】解:∵k=3>0,图象过一三象限,b=-2<0过第四象限∴这条直线一定不经过第二象限.故答案为:二【点睛】此题考查一次函数的性质,一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.18、115°【解析】试题分析:根据垂直平分线的性质可得BE=CE,即可得到∠EBC=∠ECB=25°,再根据三角形外角的性质即可求得∠AEC=∠EDC+∠ECB=115°.考点:角平分线的性质,垂直平分线的性质,三角形外角的性质三、解答题(共78分)19、(1)见解析;(2)【解析】
(1)由CD//EF,CD=EF可证四边形CDEF是平行四边形,由于DE=DC可证四边形CDEF是菱形(2)当四边形ABFE周长最小时此时AE⊥BD,利用勾股定理可求BD、AE、ED的长度,进而求四边形CDEF的周长即可【详解】证明:(1)在矩形ABCD中CD∥AB,CD=AB,∵EF∥AB,EF=AB∴CD//EF,CD=EF∴四边形CDEF是平行四边形,又∵DE=DC∴四边形CDEF是菱形(2)在矩形ABCD中,∠BAD=90°,AD=BC=3∴当四边形ABFE周长最小时,AE⊥BD此时;BD=,∠AED=90°由(1)可知四边形CDEF是平行四边形四边形CDEF的周长为故:当四边形ABFE周长最小时,四边形CDEF的周长为【点睛】本题考查了菱形的判定方法,熟练掌握菱形的判定方法是解题的关键.20、(4)(4,7),3;(3)a=a=3,b=6;(3)S=.【解析】
(4)根据直线解析式求出点N的坐标,然后根据函数图象可知直线平移3个单位后经过点A,从而求的点A的坐标,由点F的横坐标可求得点D的坐标,从而可求得AD的长,据此可求得ABCD的面积;(3)如图4所示;当直线MN经过点B时,直线MN交DA于点E,首先求得点E的坐标,然后利用勾股定理可求得BE的长,从而得到a的值;如图3所示,当直线MN经过点C时,直线MN交x轴于点F,求得直线MN与x轴交点F的坐标从而可求得b的值;(3)当7≤t<3时,直线MN与矩形没有交点;当3≤t<5时,如图3所示S=△EFA的面积;当5≤t<7时,如图4所示:S=SBEFG+SABG;当7≤t≤6时,如图5所示.S=SABCD﹣SCEF.【详解】解:(4)令直线y=x﹣4的y=7得:x﹣4=7,解得:x=4,∴点M的坐标为(4,7).由函数图象可知:当t=3时,直线MN经过点A,∴点A的坐标为(4,7)沿x轴的负方向平移3个单位后与矩形ABCD相交于点A,∵y=x﹣4沿x轴的负方向平移3个单位后直线的解析式是:y=x+3﹣4=x﹣4,∴点A的坐标为(4,7);由函数图象可知:当t=7时,直线MN经过点D,∴点D的坐标为(﹣3,7).∴AD=4.∴矩形ABCD的面积=AB•AD=4×3=3.(3)如图4所示;当直线MN经过点B时,直线MN交DA于点E.∵点A的坐标为(4,7),∴点B的坐标为(4,3)设直线MN的解析式为y=x+c,将点B的坐标代入得;4+c=3.∴c=4.∴直线MN的解析式为y=x+4.将y=7代入得:x+4=7,解得x=﹣4,∴点E的坐标为(﹣4,7).∴BE=.∴a=3如图3所示,当直线MN经过点C时,直线MN交x轴于点F.∵点D的坐标为(﹣3,7),∴点C的坐标为(﹣3,3).设MN的解析式为y=x+d,将(﹣3,3)代入得:﹣3+d=3,解得d=5.∴直线MN的解析式为y=x+5.将y=7代入得x+5=7,解得x=﹣5.∴点F的坐标为(﹣5,7).∴b=4﹣(﹣5)=6.(3)当7≤t<3时,直线MN与矩形没有交点.∴s=7.当3≤t<5时,如图3所示;S=;当5≤t<7时,如图4所示:过点B作BG∥MN.由(3)可知点G的坐标为(﹣4,7).∴FG=t﹣5.∴S=SBEFG+SABG=3(t﹣5)+=3t﹣3.当7≤t≤6时,如图5所示.FD=t﹣7,CF=3﹣DF=3﹣(t﹣7)=6﹣t.S=SABCD﹣SCEF=.综上所述,S与t的函数关系式为S=【点睛】本题主要考查的是一次函数的综合应用,解答本题需要同学们熟练掌握矩形的性质、待定系数法求一次函数的解析式、勾股定理、三角形、平行四边形、矩形的面积公式,根据题意分类画出图形是解题的关键.21、(1)0.73,2.25;(2)2,10;(3)1.【解析】
(1)根据极差、平均数的定义求解;(2)对照表格得到10名男生立定跳远得分,然后根据中位线、众数的概念解答;(3)用样本根据总体.【详解】解:(1)10名男生“立定跳远”成绩的极差是:2.60-1.87=0.73(米)10名男生“立定跳远”成绩的平均数是:(1.26+2.38+2.56+2.04+2.34+2.17+2.60+2.26+1.87+2.32)=2.25(米);(2)抽查的10名男生的立定跳远得分依次是:7,10,10,8,10,8,10,2,6,2.∴10名男生立定跳远得分的中位数是2分,众数是10分;(3)∵抽查的10名男生中得分2分(含2分)以上有6人,
∴有480×=1;∴估计该校480名男生中得到优秀的人数是1人.【点睛】本题考查了极差,平均数,中位线,众数的概念,极差是一组数据中最大的数与最小的数的差.众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.平均数、众数及中位数都是描述一组数据的集中趋势的特征数,但描述的角度和适用范围有所不同.22、(1)0.1;(2)0.1;(3)30个【解析】
(1)根据表中的数据,估计得出摸到白球的频率.(2)根据概率与频率的关系即可求解;(3)根据摸到白球的频率即可得到白球数目.【详解】解:(1)由表中数据可知,当n很大时,摸到白球的频率将会接近0.1,故答案为:0.1.(2))∵摸到白球的频率为0.1,∴假如你摸一次,你摸到白球的概率P(白球)=0.1,故答案为0.1;(3)盒子里白色的球有50×0.1=30(只).【点睛】本题比较容易,考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:部分的具体数目=总体数目×相应频率.23、2或1.【解析】分析:由已知条件|2a-3b+5|+(2a+3b-13)2=0,可得2a-3b+5=0且2a+3b-13=0,由此即可解得a和b的值,再分a为等腰三角形底和b为等腰三角形的底两种情况分别计算出等腰三角形的周长即可.详解:∵|2a-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 黄河文化的丰富内涵与时代价值
- 2025新译林版英语七年级下单词默写单
- 北海2024年01版小学6年级上册英语第6单元测验卷
- 2024年洗煤项目资金申请报告代可行性研究报告
- 2024年超高分子量聚乙烯项目投资申请报告代可行性研究报告
- 《紧密纺精梳棉纱制备技术规范》
- Python程序设计实践- 习题及答案 ch02 问题求解与计算思维
- 组织部工作总结15篇
- 读书交流会专题讨论发言稿
- 广西景点导游词1000字(14篇)
- 《教育均衡发展》课件
- 糖尿病性视网膜病变汇报演示课件
- 《门店选址策略》课件
- 慢性胰腺炎护理课件
- 小学六年级数学培优专题训练
- 乳腺结节微创护理查房
- 运维评估报告
- 工业催化课件
- 试卷印制服务投标方案(技术标)
- 小学六年级语文(小升初)修改病句专项练习题(含答案)
- 人教版六年级音乐上册全册教案
评论
0/150
提交评论