2024届贵州省铜仁市松桃县数学八年级下册期末综合测试模拟试题含解析_第1页
2024届贵州省铜仁市松桃县数学八年级下册期末综合测试模拟试题含解析_第2页
2024届贵州省铜仁市松桃县数学八年级下册期末综合测试模拟试题含解析_第3页
2024届贵州省铜仁市松桃县数学八年级下册期末综合测试模拟试题含解析_第4页
2024届贵州省铜仁市松桃县数学八年级下册期末综合测试模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届贵州省铜仁市松桃县数学八年级下册期末综合测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B.已知小颖的眼睛D离地面的高度CD=1.5m,她离镜子的水平距离CE=0.5m,镜子E离旗杆的底部A处的距离AE=2m,且A、C、E三点在同一水平直线上,则旗杆AB的高度为()A.4.5m B.4.8m C.5.5m D.6m2.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.1.其中合理的是()A.① B.② C.①② D.①③3.已知:如图,在矩形ABCD中,E,F,G,H分别为边AB,BC,CD,DA的中点.若AB=2,AD=4,则图中阴影部分的面积为()A.5 B.4.5 C.4 D.3.54.某班同学在研究弹簧的长度跟外力的变化关系时,实验记录得到相应的数据如下表:砝码的质量x/g050100150200250300400500指针位置y/cm2345677.57.57.5则下列图象中,能表示y与x的函数关系的图象大致是()A. B.C. D.5.在平行四边形ABCD中,若∠B=135°,则∠D=()A.45° B.55° C.135° D.145°6.如图,在中,,,平分交于点,点为的中点,连接,则的周长为()A.12 B.14 C.15 D.207.下列图象不能反映y是x的函数的是()A. B.C. D.8.下面与是同类二次根式的是()A. B. C. D.9.如图的中有一正方形,其中在上,在上,直线分别交于两点.若,则的长度为()A. B. C. D.10.若反比例函数的图象经过点,则该反比例函数的图象位于()A.第一、二象限 B.第二、三象限 C.第二、四象限 D.第一、三象限11.下列选项中的计算,正确的是(

)A.9=±3 B.23-3=2 C.-52=-5 D.12.如图,在平面直角坐标系中,点的坐标为,点的坐标为,以点为圆心,长为半径画弧,交轴的负半轴于点,则点的坐标为()A. B. C. D.二、填空题(每题4分,共24分)13.式子在实数范围内有意义,则x的取值范围是_____.14.在△ABC中,AB=10,CA=8,BC=6,∠BAC的平分线与∠BCA的平分线交于点I,且DI∥BC交AB于点D,则DI的长为____.15.要使有意义,则x的取值范围是_________.16.对甲、乙、丙三名射击手进行20次测试,平均成绩都是8.5环,方差分别是0.4,3.2,1.6,在这三名射击手中成绩比较稳定的是_________________.17.如图,函数和的图象交于点,则不等式的解集是_____.18.有五个面的石块,每个面上分别标记1,2,3,4,5,现随机投掷100次,每个面落在地面上的次数如下表,估计石块标记3的面落在地面上的概率是______.石块的面12345频数1728151624三、解答题(共78分)19.(8分)勾股定理神秘而美妙,它的证法多样,其中的“面积法”给了李明灵感,他惊喜地发现;当两个全等的直角三角形如图(1)摆放时可以利用面积法”来证明勾股定理,过程如下如图(1)∠DAB=90°,求证:a2+b2=c2证明:连接DB,过点D作DF⊥BC交BC的延长线于点F,则DF=b-aS四边形ADCB=S四边形ADCB=∴化简得:a2+b2=c2请参照上述证法,利用“面积法”完成如图(2)的勾股定理的证明,如图(2)中∠DAB=90°,求证:a2+b2=c220.(8分)定义:已知直线,则k叫直线l的斜率.性质:直线(两直线斜率存在且均不为0),若直线,则.(1)应用:若直线互相垂直,求斜率k的值;(2)探究:一直线过点A(2,3),且与直线互相垂直,求该直线的解析式.21.(8分)已知实数a,b,c在数轴上的位置如图所示,化简:.22.(10分)《九章算术》“勾股”章有一题:“今有二人同所立,甲行率七,乙行率三.乙东行,甲南行十步而斜东北与乙会.问甲乙行各几何”.大意是说,已知甲、乙二人同时从同一地点出发,甲的速度为7,乙的速度为1.乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.那么相遇时,甲、乙各走了多远?23.(10分)如图,抛物线与直线相交于,两点,且抛物线经过点(1)求抛物线的解析式.(2)点是抛物线上的一个动点(不与点点重合),过点作直线轴于点,交直线于点.当时,求点坐标;(3)如图所示,设抛物线与轴交于点,在抛物线的第一象限内,是否存在一点,使得四边形的面积最大?若存在,请求出点的坐标;若不存在,说明理由.24.(10分)某市提倡“诵读中华经典,营造书香校园”的良好诵读氛围,促进校园文化建设,进而培养学生的良好诵读习惯,使经典之风浸漫校园.某中学为了了解学生每周在校经典诵读时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表,请根据图表信息解答下列问题:时间(小时)频数(人数)频率2≤t<340.13≤t<4100.254≤t<5a0.155≤t<68b6≤t<7120.3合计401(1)表中的a=,b=;(2)请将频数分布直方图补全;(3)若该校共有1200名学生,试估计全校每周在校参加经典诵读时间至少有4小时的学生约为多少名?25.(12分)已知一次函数的图像经过点(2,1)和(0,-2).(1)求该函数的解析式;(2)判断点(-4,6)是否在该函数图像上.26.解不等式组:并在数轴上表示解集.

参考答案一、选择题(每题4分,共48分)1、D【解析】

根据题意得出△ABE∽△CDE,进而利用相似三角形的性质得出答案.【详解】解:由题意可得:AE=2m,CE=0.5m,DC=1.5m,∵△ABC∽△EDC,∴DCAB即1.5AB解得:AB=6,故选:D.【点睛】本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE∽△CDE是解答此题的关键.2、B【解析】

随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,据此进行判断即可.【详解】解:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,“正面向上”的概率不一定是0.47,故错误;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,故正确;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率不一定是0.1,故错误.故选:B.【点睛】本题考查了利用频率估计概率,明确概率的定义是解题的关键.3、C【解析】连接AC,BD,FH,EG,∵四边形ABCD是矩形,∴AC=BD,∵E,F,G,H分别为边AB,BC,CD,DA的中点,∴HG=AC,EF∥AC,EF=AC,EH=BD,GF=BD,∴EH=HG=EF=GF,∴平行四边形EFGH是菱形,∴FH⊥EG,∴阴影部分EFGH的面积是×HF×EG=×2×4=4,故选C.4、B【解析】

通过(0,2)和(100,4)利用待定系数法求出一次函数的解析式,再对比图象中的折点即可选出答案.【详解】解:由题干内容可得,一次函数过点(0,2)和(100,4).设一次函数解析式为y=kx+b,代入点(0,2)和点(100,4)可解得,k=0.02,b=2.则一次函数解析式为y=0.02x+2.显然当y=7.5时,x=275,故选B.【点睛】此题主要考查函数的图象和性质,利用待定系数法求一次函数解析式.5、C【解析】

根据平行四边形的性质解答即可.【详解】解:∵在平行四边形ABCD中,∠B=135°,∴∠D=∠B=135°,

故选:C.【点睛】本题考查了平行四边形的性质的知识,解答本题的关键是根据平行四边形的性质得出∠D=∠B.6、B【解析】

根据AB=AC,可知△ABC为等腰三角形,由等腰三角形三线合一的性质可得AD⊥BC,AD为△ABC的中线,故,∠ADC=90°,又因为点E为AC的中点,可得,从而可以得到△CDE的周长.【详解】解:∵AB=AC,

∴△ABC是等腰三角形.

又∵AD平分∠BAC,

∴AD⊥BC,AD是△ABC的中线,

∴∠ADC=90°,,在中,点E为AC的中点,,

∵AB=AC=10,BC=8,

∴,.

∴△CDE的周长为:.故选:B.【点睛】本题考查了等腰三角形三线合一的性质,直角三角形斜边上的中线等于斜边的一半的性质,关键是正确分析题目,从中得出需要的信息.7、C【解析】

解:A.当x取一值时,y有唯一与它对应的值,y是x的函数,不符合题意;B.当x取一值时,y有唯一与它对应的值,y是x的函数,;不符合题意C.当x取一值时,y没有唯一与它对应的值,y不是x的函数,符合题意;D.当x取一值时,y有唯一与它对应的值,y是x的函数,不符合题意.故选C.8、B【解析】

根据同类二次根式的定义,先将各选项化为最简二次根式,再看被开方数是否相同即可.【详解】解:A、与被开方数不同,不是同类二次根式;B、与被开方数相同,是同类二次根式;C、=3与被开方数不同,不是同类二次根式;D、与被开方数不同,不是同类二次根式.【点睛】此题主要考查了同类二次根式的定义即化成最简二次根式后,被开方数相同.这样的二次根式叫做同类二次根式.9、D【解析】

由DE∥BC可得求出AE的长,由GF∥BN可得,将AE的长代入可求得BN.【详解】解:∵四边形DEFG是正方形,∴DE∥BC,GF∥BN,且DE=GF=EF=1,∴△ADE∽△ACB,△AGF∽△ANB,∴①,②,由①可得,,解得:,把代入②,得:,解得:,故选择:D.【点睛】本题主要考查正方形的性质及相似三角形的判定与性质,根据相似三角形的性质得出AE的长是解题的关键.10、D【解析】

首先将点坐标代入函数解析式,即可得出的值,即可判定反比例函数所处的象限.【详解】解:∵反比例函数图象经过点,∴∴∴该反比例函数图像位于第一、三象限,故答案为D.【点睛】此题主要考查利用点坐标求出反比例函数解析式,即可判定其所在象限.11、D【解析】

根据算术平方根的定义,开方运算是求算术平方根,结果是非负数,同类根式相加减,把同类二次根式的系数相加减,做为结果的系数,根号及根号内部都不变.【详解】解:A、9=3B、23C、(-5)2D、34故答案为:D【点睛】本题考查了算术平方根的计算、二次根式的计算,熟练掌握数的开方、同类二次根式的合并及二次根式商的性质是解题的关键.12、B【解析】

先根据勾股定理求出AB的长,由于AB=AC,可求出AC的长,再根据点C在x轴的负半轴上即可得出结论.【详解】解:∵点A的坐标为(4,0),点的坐标为(0,3),∴OA=4,OB=3,∴AB==5,∵以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,∴AC=5,∴OC=1,∴点C的坐标为(-1,0).故选B.【点睛】本题考查的是勾股定理在直角坐标系中的运用,根据题意利用勾股定理求出AC的长是解答此题的关键.二、填空题(每题4分,共24分)13、x≤1【解析】

二次根式的被开方数是非负数.【详解】解:依题意,得1﹣x≥0,解得,x≤1.故答案是:x≤1.【点睛】考查了二次根式的意义和性质.概念:式子叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.14、2.5【解析】

根据题意,△ABC是直角三角形,延长DI交AC于点E,过I作IF⊥AB,IG⊥BC,由点I是内心,则,利用等面积的方法求得,然后利用平行线分线段成比例,得,又由BD=DI,把数据代入计算,即可得到DI的长度.【详解】解:如图,延长DI交AC于点E,过I作IF⊥AB,IG⊥BC,在△ABC中,AB=10,CA=8,BC=6,∴,∴△ABC是直角三角形,即AC⊥BC,∵DI∥BC,∴DE⊥AC,∵∠BAC的平分线与∠BCA的平分线交于点I,∴点I是三角形的内心,则,在△ABC中,根据等面积的方法,有,设即,解得:,∵DI∥BC,∴,∠DIB=∠CBI=∠DBI,∴DI=BD,∴,解得:BD=2.5,∴DI=2.5;故答案为:2.5.【点睛】本题考查了三角形的角平分线性质,平行线分线段成比例,以及等面积法计算高,解题的关键是利用等面积法求得内心到各边的距离,以及掌握平行线分线段成比例的性质.15、.【解析】

根据二次根式有意义的条件即可解答.【详解】∵有意义,∴2x+5≥0,解得,.故答案为:.【点睛】本题考查了二次根式有意义的条件,熟知二次根式有意义被开方数为非负数是解决问题的关键.16、甲【解析】

根据方差的意义即可得出结论.【详解】根据方差的定义,方差越小数据越稳定,因为=0.4,=3.2,=1.6,方差最小的为甲,所以本题中成绩比较稳定的是甲,故答案为甲.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.17、【解析】

观察图象,写出直线在直线的下方所对应的自变量的范围即可.【详解】解:观察图象得:当时,,即不等式的解集为.故答案为:.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数的值大于(或小于)0的自变量的取值范围;从函数图象的角度看,就是确定直线在轴上(或下)方部分所有的点的横坐标所构成的解集.18、【解析】

根据表中的信息,先求出石块标记3的面落在地面上的频率,再用频率估计概率即可.【详解】解:石块标记3的面落在地面上的频率是=,

于是可以估计石块标记3的面落在地面上的概率是.故答案为:.【点睛】本题考查用频率来估计概率,在大量重复试验下频率的稳定值即是概率,属于基础题.三、解答题(共78分)19、见解析.【解析】

首先连结BD,过点B作DE边上的高BF,则BF=b-a,表示出S五边形ACBED,两者相等,整理即可得证.【详解】证明:连结BD,过点B作DE边上的高BF,则BF=b-a,∵S五边形ACBED=S△ACB+S△ABE+S△ADE=ab+b1+ab,又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=ab+c1+a(b-a),∴ab+b1+ab=ab+c1+a(b-a),∴a1+b1=c1.【点睛】此题考查了勾股定理的证明,用两种方法表示出五边形ACBED的面积是解本题的关键.20、(1);(2).【解析】

(1)根据,则的性质解答即可;(2)设该直线的解析式为,根据,则的性质可求出k的值,把A点坐标代入可求出b值,即可得答案.【详解】(1)∵直线互相垂直,∴,∴.(2)设该直线的解析式为,∵直线与直线互相垂直,∴,解得:k=3,把A(2,3)代入得:,解得:b=﹣3,∴该直线的解析式为.【点睛】本题考查了两直线相交问题,正确理解题中所给定义与性质是解题关键.21、【解析】

直接利用数轴判断得出:a<0,a+c<0,c-a<0,b>0,进而化简即可.【详解】由数轴,得,,,.则原式.【点睛】此题考查二次根式的性质与化简,数轴,解题关键在于利用数轴进行解答.22、甲走了24.5步,乙走了10.5步【解析】试题分析:设经x秒二人在B处相遇,然后利用勾股定理列出方程即可求得甲乙两人走的步数.试题解析:设经x秒二人在B处相遇,这时乙共行AB=1x,甲共行AC+BC=7x,∵AC=10,∴BC=7x﹣10,又∵∠A=90°,∴BC2=AC2+AB2,∴(7x﹣10)2=102+(1x)2,∴x=0(舍去)或x=1.5,∴AB=1x=10.5,AC+BC=7x=24.5,答:甲走了24.5步,乙走了10.5步.23、(1);(2)点坐标为(2,9)或(6,-7);(3)存在点Q()使得四边形OFQC的面积最大,见解析.【解析】

(1)先由点在直线上求出点的坐标,再利用待定系数法求解可得;(2)可设出点坐标,则可表示出、的坐标,从而可表示出和的长,由条件可知到关于点坐标的方程,则可求得点坐标;(3)作轴于点,设,,知,,,根据四边形的面积建立关于的函数,再利用二次函数的性质求解可得.【详解】解:(1)点在直线上,,,把、、三点坐标代入抛物线解析式可得,解得,抛物线解析式为;(2)设,则,,则,,,,当时,解得或,但当时,与重合不合

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论