版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年湖南省东安县数学八年级下册期末联考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.边长为a的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),…,按此方式依次操作,则第6个正六边形的边长为()A. B. C. D.2.若顺次连结四边形四条边的中点,所得的四边形是菱形,则原四边形一定是()A.平行四边形 B.矩形C.对角线相等的四边形 D.对角线互相垂直的四边形3.点A、B、C、D在同一平面内,从AB∥CD,AB=CD,AD∥BC这三条件中任选两个能使四边形ABCD是平行四边形的选法有()A.1种 B.2种 C.3种 D.以上都不对4.如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省()元A.3 B.4 C.5 D.65.如图所示,在菱形ABCD中,已知两条对角线AC=24,BD=10,则此菱形的边长是()A.11 B.13 C.15 D.176.下列各点中,在双曲线y=-上的点是().A.(,-9) B.(3,1) C.(-1,-3) D.(6,)7.如图,直线与直线交于点,则方程组解是()A. B. C. D.8.如图,小明在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于的长为半径画弧,两弧相交于C、D两点,直线CD即为所求.根据他的作图方法可知四边形一定是()A.矩形 B.菱形 C.正方形 D.无法确定9.有一个正方体,6个面上分别标有1到6这6个整数,投掷这个正方体一次,则出现向上一面的数字是偶数的概率为()A. B. C. D.10.下列命题是真命题的是()A.平行四边形对角线相等 B.直角三角形两锐角互补C.不等式﹣2x﹣1<0的解是x<﹣ D.多边形的外角和为360°11.如图,若平行四边形ABCD的周长为40cm,BC=AB,则BC=()A.16crn B.14cm C.12cm D.8cm12.下列曲线中,不能表示y是x的函数的是()A. B. C. D.二、填空题(每题4分,共24分)13.直线y=2x﹣4与x轴的交点坐标是_____.14.已知一次函数y=kx+b的图象交y轴于正半轴,且y随x的增大而减小,请写出符合上述条件的一个解析式:_____.15.如图,△ABC中,AB+AC=6cm,BC的垂直平分线l与AC相交于点D,则△ABD的周长为___cm.16.因式分解:2x2-1817.若一次函数的图像与直线平行,且经过点,则这个一次函数的表达式为______.18.关于x的一元二次方程无实数根,则m的取值范围是______.三、解答题(共78分)19.(8分)(1)计算:(2)解方程:(1-2x)2=x2-6x+920.(8分).21.(8分)在平行四边形ABCD中,∠BAD的平分线交线段BC于点E,交线段DC的延长线于点F,以EC、CF为邻边作平行四边形ECFG.(1)如图1,证明平行四边形ECFG为菱形;(2)如图2,若∠ABC=90°,M是EF的中点,求∠BDM的度数;(3)如图3,若∠ABC=120°,请直接写出∠BDG的度数.22.(10分)解方程:(1)2x2﹣3x+1=1.(2)x2﹣8x+1=1.(用配方法)23.(10分)已知在中,是边上的一点,的角平分线交于点,且,求证:.24.(10分)某学校八年级学生举行朗诵比赛,全年级学生都参加,学校对表现优异的学生进行表彰,设置—、二、三等奖和进步奖共四个奖项,赛后将八年级(1)班的获奖情况绘制成如图所示的两幅不完整的统计图,请报据图中的信息,解答下列问题:(1)八年级(1)班共有名学生;(2)将条形图补充完整;在扇形统计图中,“二等奖”对应的扇形的圆心角度数;(3)如果该八年级共有800名学生,请估计荣获一、二、三等奖的学生共有多少名.25.(12分)已知:如图,一次函数与的图象相交于点.(1)求点的坐标;(2)结合图象,直接写出时的取值范围.26.如图,在ABC,C90,AC<BC,D为BC上一点,且到A、B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连结AD,若B36,求∠CAD的度数.
参考答案一、选择题(每题4分,共48分)1、A【解析】连接AD、DB、DF,求出∠AFD=∠ABD=90°,根据HL证两三角形全等得出∠FAD=60°,求出AD∥EF∥GI,过F作FZ⊥GI,过E作EN⊥GI于N,得出平行四边形FZNE得出EF=ZN=a,求出GI的长,求出第一个正六边形的边长是a,是等边三角形QKM的边长的;同理第二个正六边形的边长是等边三角形GHI的边长的;求出第五个等边三角形的边长,乘以即可得出第六个正六边形的边长.连接AD、DF、DB.∵六边形ABCDEF是正六边形,∴∠ABC=∠BAF=∠AFE,AB=AF,∠E=∠C=120°,EF=DE=BC=CD,∴∠EFD=∠EDF=∠CBD=∠BDC=30°,∵∠AFE=∠ABC=120°,∴∠AFD=∠ABD=90°,在Rt△ABD和RtAFD中∴Rt△ABD≌Rt△AFD(HL),∴∠BAD=∠FAD=×120°=60°,∴∠FAD+∠AFE=60°+120°=180°,∴AD∥EF,∵G、I分别为AF、DE中点,∴GI∥EF∥AD,∴∠FGI=∠FAD=60°,∵六边形ABCDEF是正六边形,△QKM是等边三角形,∴∠EDM=60°=∠M,∴ED=EM,同理AF=QF,即AF=QF=EF=EM,∵等边三角形QKM的边长是a,∴第一个正六边形ABCDEF的边长是a,即等边三角形QKM的边长的,过F作FZ⊥GI于Z,过E作EN⊥GI于N,则FZ∥EN,∵EF∥GI,∴四边形FZNE是平行四边形,∴EF=ZN=a,∵GF=AF=×a=a,∠FGI=60°(已证),∴∠GFZ=30°,∴GZ=GF=a,同理IN=a,∴GI=a+a+a=a,即第二个等边三角形的边长是a,与上面求出的第一个正六边形的边长的方法类似,可求出第二个正六边形的边长是×a;同理第第三个等边三角形的边长是×a,与上面求出的第一个正六边形的边长的方法类似,可求出第三个正六边形的边长是××a;同理第四个等边三角形的边长是××a,第四个正六边形的边长是×××a;第五个等边三角形的边长是×××a,第五个正六边形的边长是××××a;第六个等边三角形的边长是××××a,第六个正六边形的边长是×××××a,即第六个正六边形的边长是×a,故选A.2、C【解析】∵四边形EFGH是菱形,∴EH=FG=EF=HG=BD=AC,故AC=BD.故选C.3、B【解析】
分别从3个条件中选取2个,共3种情况:若选AB∥CD,AB=CD,若选AB∥CD,AD∥BC,若选AB=CD,AD∥BC,逐一利用平行四边形的判定方法验证即可.【详解】若选AB∥CD,AB=CD,∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形);若选AB∥CD,AD∥BC,∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形);若选AB=CD,AD∥BC,不能说明四边形ABCD是平行四边形;故选:B.【点睛】本题主要考查平行四边形的判定,掌握平行四边形的判定方法是解题的关键.4、B【解析】
根据OA段可求出每千克苹果的金额,再由函数图像可得一次购买3千克这种苹果的金额,故可比较.【详解】根据OA段可得每千克苹果的金额为20÷2=10(元)故分三次每次购买1千克这种苹果的金额为3×10=30(元)由函数图像可得一次购买3千克这种苹果的金额26(元)故节省30-26=4(元)故选B.【点睛】此题主要考查函数图像的应用,解题的关键是根据题意求出每千克苹果的金额数.5、B【解析】
由菱形的性质可得AO=12AC=12,BO=12【详解】如图,∵四边形ABCD是菱形∴AC⊥BD,AO=12AC=12,BO=1∴AB=AO故选B.【点睛】本题考查了菱形的性质,利用勾股定理求AB长是本题的关键.6、A【解析】
将各点代入曲线的解析式进行计算即可.【详解】A.(,-9),在双曲线解析式上;B.(3,1),不在双曲线解析式上;C.(-1,-3),不在双曲线解析式上;D.(6,),不在双曲线解析式上;故答案为:A.【点睛】本题考查了双曲线的点的问题,掌握代入法是解题的关键.7、B【解析】
根据一次函数与二元一次方程组的关系解答即可.【详解】∵直线与直线交于点,∴方程组即的解是.故选B.【点睛】本题主要考查一次函数函数与二元一次方程组的关系,函数图象交点坐标为两函数解析式组成的方程组的解.8、B【解析】
根据菱形的判定方法:四边都相等的四边形是菱形判定即可.【详解】根据作图方法可得:,因此四边形ABCD一定是菱形.故选:B【点睛】本题考查了菱形的判定,解题的关键在于根据四边相等的四边形是菱形判断.9、C【解析】试题分析:出现向上一面的数字有6种,其中是偶数的有3种,故概率为.考点:概率的计算10、D【解析】
根据平行四边形的性质、直角三角形的性质、一元一次不等式的解法、多边形的外角和定理判断即可.【详解】平行四边形对角线不一定相等,A是假命题;直角三角形两锐角互余,B是假命题;不等式-2x-1<0的解是x>-,C是假命题;多边形的外角和为360°,D是真命题;故选D.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.11、D【解析】∵平行四边形ABCD的周长为40cm,,∴AB=CD,AD=BC,AB+BC+CD+AD=40cm,∴2(AB+BC)=40,∵BC=AB,∴BC=8cm,故选D.12、D【解析】
在函数图像中,对于x的取值范围内的任意一点,通过这点作x轴的垂线,则垂线与图像只有一个交点,据此判断即可.【详解】解:显然A、B、C中,对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数;D中存在x的值,使y有二个值与之相对应,则y不是x的函数;故选:D.【点睛】本题主要考查了函数的定义,在定义中特别要注意,对于x的每一个值,y都有唯一的值与其对应.二、填空题(每题4分,共24分)13、(2,0)【解析】
与x轴交点的纵坐标是0,所以把代入函数解析式,即可求得相应的x的值.【详解】解:令,则,解得.所以,直线与x轴的交点坐标是.故填:.【点睛】本题考查了一次函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.14、【解析】试题解析:∵一次函数y=kx+b的图象交y轴于正半轴,∴b>0,∵y随x的增大而减小,∴k<0,例如y=-x+1(答案不唯一,k<0且b>0即可).考点:一次函数图象与系数的关系.15、6【解析】
∵l垂直平分BC,∴DB=DC.∴△ABD的周长=AB+AD+BD=AB+AD+DC=AB+AC=6cm16、2(x+3)(x﹣3).【解析】试题分析:先提公因式2后,再利用平方差公式分解即可,即2x2-18考点:因式分解.17、【解析】
设这个一次函数的表达式y=-1x+b,把代入即可.【详解】设这个一次函数的表达式y=-1x+b,把代入,得-4+b=-1,∴b=3,∴.故答案为:.【点睛】本题考查了两条直线的平行问题:若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.例如:若直线y1=k1x+b1与直线y1=k1x+b1平行,那么k1=k1.也考查了待定系数法.18、m>2【解析】
利用一元二次方程的定义和判别式的意义得到m-1≠0且△=(-2)2-4(m-1)<0,然后求出两不等式的公共部分即可.【详解】解:∵要保证方程为二次方程故m-1≠0得m≠1,又∵方程无实数根,∴△=b2-4ac=(-2)2-4(m-1)<0,解得m>2,故答案为m>2.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.三、解答题(共78分)19、(1)-(2)-2、【解析】
(1)根据二次根式的运算法则进行运算;(2)运用开方知识解方程.【详解】(1)解:原式=3﹣15×+×=3+=;(2)解:原方程可化为:【点睛】本题考核知识点:二次根式运算,解一元二次方程.解题关键点:掌握二次根式运算法则和开方知识解方程.20、【解析】
先根据平方差和完全平方公式化简,再进行加减运算即可.【详解】解:原式===【点睛】本题是对二次根式混合运算的考查,熟练掌握平方差和完全平方公式是解决本题的关键.21、(1)证明见解析;(2)∠BDM的度数为45°;(3)∠BDG的度数为60°.【解析】
(1)平行四边形的性质可得AD∥BC,AB∥CD,再根据平行线的性质证明∠CEF=∠CFE,根据等角对等边可得CE=CF,再有条件四边形ECFG是平行四边形,可得四边形ECFG为菱形;(2)首先证明四边形ECFG为正方形,再证明△BME≌△DMC可得DM=BM,∠DMC=∠BME,再根据∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°可得到∠BDM的度数;(3)延长AB、FG交于H,连接HD,求证平行四边形AHFD为菱形,得出△ADH,△DHF为全等的等边三角形,证明△BHD≌△GFD,即可得出答案.【详解】(1)∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,又∵四边形ECFG是平行四边形,∴四边形ECFG为菱形.(2)如图,连接BM,MC,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,在△BME和△DMC中,∵∴△BME≌△DMC(SAS),∴MB=MD,∠DMC=∠BME.∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,∴△BMD是等腰直角三角形,∴∠BDM=45°;(3)∠BDG=60°,延长AB、FG交于H,连接HD.∵AD∥GF,AB∥DF,∴四边形AHFD为平行四边形,∵∠ABC=120°,AF平分∠BAD,∴∠DAF=30°,∠ADC=120°,∠DFA=30°,∴△DAF为等腰三角形,∴AD=DF,∴平行四边形AHFD为菱形,∴△ADH,△DHF为全等的等边三角形,∴DH=DF,∠BHD=∠GFD=60°,∵FG=CE,CE=CF,CF=BH,∴BH=GF,在△BHD与△GFD中,∵,∴△BHD≌△GFD(SAS),∴∠BDH=∠GDF∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60°.【点睛】此题主要考查平行四边形的判定方法,全等三角形的判定与性质,等边三角形的判定与性质,菱形的判定与性质等知识点,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.22、(1)x1=,x2=1;(2)x1=4+,x2=4﹣【解析】
(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)移项,配方,开方,即可得出两个一元一次方程,求出方程的解即可.【详解】解:(1)2x2﹣3x+1=1,(2x﹣1)(x﹣1)=1,2x﹣1=1,x﹣1=1,x1=,x2=1;(2)x2﹣8x+1=1,x2﹣8x=﹣1,x2﹣8x+16=﹣1+16,(x﹣4)2=15,x﹣4=±,x1=4+,x2=4﹣.【点睛】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键.23、证明见解析.【解析】
根据角平分线的性质和外角等于不相邻两内角和即可求得∠ABD=∠C,可证明△ABD∽△ABC,即可解题.【详解】∵平分,∴,∵,∴,∵,,∴,∵,,∴,∴,即:,∵,∴.【点睛】本题考查了相似三角形的判定,考查了相似三角形对应边比例相等的性质.24、(1)50;(2)见解析;57.6°;(3)368.【解析】
(1)根据“不得奖”人数及其百分比可得总人数;(2)总
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年公司间紧急贷款协议样式版B版
- 2024年工矿企业标准协议模板汇编版B版
- 2024年医院器械供应及维护协议版
- 2024年专业保安人员劳务服务协议版B版
- 2024年人工智能研发与应用于服务合同
- 2024年家庭养老床位服务定制协议一
- 2024年度企业级软件销售协议版B版
- 2024年专业技术总监劳务合作合同范本版B版
- 2024年专业技术人才临时借用协议一
- 2024年定制版协议范本下载专区版
- ICP-MS(日立公司仪器)课件
- 美标钢结构地脚螺栓设计(抗拉)的技术总结
- 仁爱英语七年级上册句型转换专练
- 穿甲弹的发展历程课件
- 低年级语文识字教学课件
- 地磁学教学课件
- 500个常用成语解释
- 气质检测制度
- 小学数学西南师大六年级上册八可能性可能性定稿PPT
- 建筑施工承插型插槽式钢管支架安全技术规程-DB33T1117-2015
- 名企丽水剪力墙结构模板工程专项施工方案
评论
0/150
提交评论