北京市北京理工大附中2024年数学八年级下册期末统考模拟试题含解析_第1页
北京市北京理工大附中2024年数学八年级下册期末统考模拟试题含解析_第2页
北京市北京理工大附中2024年数学八年级下册期末统考模拟试题含解析_第3页
北京市北京理工大附中2024年数学八年级下册期末统考模拟试题含解析_第4页
北京市北京理工大附中2024年数学八年级下册期末统考模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市北京理工大附中2024年数学八年级下册期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.小亮在同一直角坐标系内作出了和的图象,方程组的解是()A. B. C. D.2.若式子有意义,则x的取值范围是()A. B. C. D.3.若a,b为等腰△ABC的两边,且满足|a﹣5|+=0,则△ABC的周长为()A.9 B.12 C.15或12 D.9或124.如图,在△ABC中,∠C=78°,若沿图中虚线截去∠C,则∠1+∠2=()A.282° B.180° C.258° D.360°5.已知一个多边形的内角和等于900º,则这个多边形是()A.五边形 B.六边形 C.七边形 D.八边形6.如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA1A2B1,…,依此规律,则点A2018的坐标是()A.(﹣2018,0) B.(21009,0)C.(21008,﹣21008) D.(0,21009)7.矩形的面积为,一边长为,则另一边长为()A. B. C. D.8.如图,在中,,,点D,E分别是AB,BC的中点,连接DE,CD,如果,那么的周长()A.28 B.28.5 C.32 D.369.在下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.10.同学在“爱心捐助”活动中,捐款数额为:8、10、10、4、6(单位:元),这组数据的中位数是()A.10 B.8 C.9 D.611.使根式有意义的的范围是().A.x≥0 B.x≥4 C.x≥-4 D.x≤-412.下列说法中正确的是()A.点(2,3)和点(3,2)表示同一个点B.点(-4,1)与点(4,-1)关于x轴对称C.坐标轴上的点的横坐标和纵坐标只能有一个为0D.第一象限内的点的横坐标与纵坐标均为正数二、填空题(每题4分,共24分)13.如图,在△ABC中,BC边的垂直平分线交BC于D,交AB于E,若CE平分∠ACB,∠B=40°则∠A=度.14.如图,在等腰梯形ABCD中,AD∥BC,如果AD=4,BC=8,∠B=60°,那么这个等腰梯形的腰AB的长等于____.15.如图,O是矩形ABCD对角线AC的中点,M是AD的中点,若BC=8,OB=5,则OM的长为_____16.如果直线y=-2x+k与两坐标轴所围成的三角形面积是9,则k的值为_____.17.如图,OA1=A1A2=A2A3=A3A4=…=An-1An=1,∠OA1A2=∠OA2A3=∠OA3a4=…=∠OAn-1An=90°(n>1,且n为整数).那么OA2=_____,OA4=______,…,OAn=_____.18.如图,四边形是矩形,是延长线上的一点,是上一点,;若,则=________.三、解答题(共78分)19.(8分)暑假期间某景区商店推出销售纪念品活动,已知纪念品每件的进货价为30元,经市场调研发现,当该纪念品的销售单价为40元时,每天可销售280件;当销售单价每增加1元,每天的销售数量将减少10件.(销售利润=销售总额-进货成本)(1)若该纪念品的销售单价为45元时则当天销售量为______件。(2)当该纪念品的销售单价为多少元时,该产品的当天销售利润是2610元。(3)该纪念品的当天销售利润有可能达到3700元吗?若能,请求出此时的销售单价;若不能,请说明理由。20.(8分)如图,在Rt△ABC中,∠C=90°,∠A=30°,AC=2求斜边AB的长.21.(8分)如图,在四边形中,,是的中点,,,于点.(1)求证:四边形是菱形;(2)若,,求的长.22.(10分)随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座。(1)计划到2020年底,全省5G基站的数量是多少万座?;(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率。23.(10分)(1)用“<”“>”或“=”填空:51+31______1×5×3;31+11______1×3×1.(﹣3)1+11_____1×(﹣3)×1;(﹣4)1+(﹣4)1______1×(﹣4)×(﹣4).(1)观察以上各式,你发现它们有什么规律吗?你能用一个含有字母a,b的式子表示上述规律吗?再换几个数试一试.(3)运用你所学的知识说明你发现的规律的正确性.24.(10分)先化简,再求值:(3m-)÷,其中m=2019-225.(12分)如图1,点是正方形的中心,点是边上一动点,在上截取,连结,.初步探究:在点的运动过程中:(1)猜想线段与的关系,并说明理由.深入探究:(2)如图2,连结,过点作的垂线交于点.交的延长线于点.延长交的延长线于点.①直接写出的度数.②若,请探究的值是否为定值,若是,请求出其值;反之,请说明理由26.甲、乙两名队员的10次射击训练,成绩分别被制成下列两个统计图.并整理分析数据如下表:平均成绩/环中位数/环众数/环方差甲771.2乙78(1)求,,的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?

参考答案一、选择题(每题4分,共48分)1、B【解析】

由数形结合可得,直线和的交点即为方程组的解,可得答案.【详解】解:由题意得:直线和的交点即为方程组的解,可得图像上两直线的交点为(-2,2),故方程组的解为,故选B.【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.2、C【解析】

根据二次根式的被开方数是非负数列出不等式x-1≥0,通过解该不等式即可求得x的取值范围.【详解】解:根据题意,得x-1≥0,

解得,x≥1.

故选:C.【点睛】此题考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.3、B【解析】

根据非负数的意义列出关于a、b的方程并求出a、b的值,再根据b是腰长和底边长两种情况讨论求解.【详解】解:根据题意得a-5=0,b-2=0,

解得a=5,b=2,

(1)若2是腰长,则三角形的三边长为:2、2、5,

不能组成三角形;

(2)若2是底边长,则三角形的三边长为:2、5、5,

能组成三角形,

周长为2+5+5=1.

故选B.【点睛】本题考查了等腰三角形的性质、非负数的性质及三角形三边关系;解题主要利用了非负数的性质,分情况讨论求解时要注意利用三角形的三边关系对三边能否组成三角形做出判断.4、C【解析】

先利用三角形内角与外角的关系,得出∠1+∠2=∠C+(∠C+∠3+∠4),再根据三角形内角和定理即可得出结果.【详解】如图,∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=∠C+(∠C+∠3+∠4)=78°+180°=258°.故选C.【点睛】此题主要考查了三角形内角和定理及外角的性质,三角形内角和是180°;三角形的任一外角等于和它不相邻的两个内角之和.5、C【解析】试题分析:多边形的内角和公式为(n-2)×180°,根据题意可得:(n-2)×180°=900°,解得:n=1.考点:多边形的内角和定理.6、B【解析】

根据正方形的性质找出点A1、A2、A3、A4、A5、A6、A7、A8、A9、A10、…的坐标,根据坐标的变化可找出变化规律“A8n+2(24n+1,0)(n为自然数)”,依此规律即可求出点A2018的坐标(根据点的排布找出第8n+2个点在x轴正半轴,利用排除法亦可确定答案).【详解】解:∵A1(1,1),A2(2,0),A3(2,﹣2),A4(0,﹣4),A5(﹣4,﹣4),A6(﹣8,0),A7(﹣8,8),A8(0,16),A9(16,16),A10(32,0),…,∴A8n+2(24n+1,0)(n为自然数).∵2018=252×8+2,∴点A2018的坐标为(21009,0).故选:B.【点睛】本题考查了规律型:点的坐标,根据点的坐标的变化找出变化规律“A8n+2(24n+1,0)(n为自然数)”是解题的关键.7、C【解析】

根据矩形的面积得出另一边为,再根据二次根式的运算法则进行化简即可.【详解】∵矩形的面积为18,一边长为,∴另一边长为,故选:C.【点睛】本题考查了矩形的面积和二次根式的除法,能根据二次根式的运算法则进行化简是解此题的关键.8、C【解析】

根据三角形中位线定理得到AC=2DE=7,AC//DE,根据勾股定理的逆定理得到∠ACB=90°,根据线段垂直平分线的性质得到DC=BD,根据三角形的周长公式计算即可.【详解】∵D,E分别是AB,BC的中点,∴AC=2DE=7,AC//DE,AC+BC=7+24=625,AB=25=625,∴AC+BC=AB,∴∠ACB=90°,∵AC//DE,∴∠DEB=90°,又∵E是BC的中点,∴直线DE是线段BC的垂直平分线,∴DC=BD,∴△ACD的周长=AC+AD+CD=AC+AD+BD=AC+AB=32,故选:C.【点睛】此题考查三角形中位线定理,线段垂直平分线的性质,勾股定理逆定理,解题关键在于求出∠ACB=90°.9、C【解析】试题分析:根据轴对称图形与中心对称图形的概念可判断出只有C选项符合要求.故选C.考点:1.中心对称图形;2.轴对称图形.10、B【解析】

找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【详解】题目中数据共有5个,

故中位数是按从小到大排列后第三数作为中位数,

故这组数据的中位数是8.

所以B选项是正确的.【点睛】本题属于基础题,考查了确定一组数据的中位数的能力.要明确定义.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.11、C【解析】

直接利用二次根式有意义的条件分析得出答案.【详解】使根式有意义,则4+x≥0,解得:x≥-4,故x的范围是:x≥-4,故选C.【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.12、D【解析】分析:根据平面直角坐标系中点的位置,即可做出判断.详解:A.点(2,3)和点(3,2)表示同一个象限内的两个点,所以A错误;B.点(﹣4,1)与点(4,1)关于x轴对称,所以B错误;C.坐标轴上的点的横坐标和纵坐标可以有一个为0,也可以两个都为0,所以C错误.D.第一象限内的点的横坐标与纵坐标均为正数,正确.故选D.点睛:解决本题的关键是要熟悉并确定点在坐标系中的位置,还涉及到点的对称问题,同时要牢记各象限内点的坐标的符号.二、填空题(每题4分,共24分)13、60【解析】试题分析:根据线段垂直平分线得出BE=CE,推出∠B=∠BCE=40°,求出∠ACB=2∠BCE=80°,代入∠A=180°-∠B-∠ACB=60°.考点:线段垂直平分线的性质14、4【解析】

过A作AE∥DC,可得到平行四边形AECD,从而可求得BE的长,由已知可得到△ABE是等边三角形,此时再求AB就不难求得了.【详解】借钱:过作AE∥DC,交BC于E,在等腰梯形ABCD中,AD∥BC,∴四边形AECD是平行四边形∴AB=AE,CE=AD=4∵∠B=60°,AB=AE,∴△ABE是等边三角形,∴AB=BE∵BE=BC-EC=8-4=4∴AB=4.故答案为:4【点睛】本题考查平行四边形的性质和等边三角形的判定与性质.15、3.【解析】

由直角三角形的性质得到AC=2OB=10,利用勾股定理求出AB=CD=6,再根据三角形的中位线得到OM的长度.【详解】∵四边形ABCD是矩形,∴∠ABC=∠D=90,AB=CD,∵O是矩形ABCD对角线AC的中点,OB=5,∴AC=2OB=10,∴CD=,∵O是AC的中点,M是AD的中点,∴OM是△ACD的中位线,∴OM=CD=3,故填:3.【点睛】此题考查矩形的性质,矩形的一条对角线将矩形分为两个全等的直角三角形,根据直角三角形斜边中线等于斜边的一半求得AC,根据勾股定理求出CD,在利用三角形的中位线求出OM.16、±1.【解析】试题分析:当x=0时,y=k;当y=0时,,∴直线与两坐标轴的交点坐标为A(0,k),B(,0),∴S△AOB=,∴k=±1.故答案为±1.考点:一次函数综合题.17、2【解析】

根据勾股定理求出OA2,OA3,OA4,即可发现其内部存在一定的规律性,找出其内在规律即可解题.【详解】解:∵,,∴,则,,……所以,故答案为:,2,.【点睛】本题考查勾股定理、规律型:图形的变化类问题,解题的关键是学会探究规律,利用规律解决问题.18、【解析】分析:由矩形的性质得出∠BCD=90°,AB∥CD,AD∥BC,证出∠FEA=∠ECD,∠DAC=∠ACB=21°,由三角形的外角性质得出∠ACF=2∠FEA,设∠ECD=x,则∠ACF=2x,∠ACD=3x,由互余两角关系得出方程,解方程即可.详解:∵四边形ABCD是矩形,∴∠BCD=90°,AB∥CD,AD∥BC,∴∠FEA=∠ECD,∠DAC=∠ACB=21°,∵∠ACF=∠AFC,∠FAE=∠FEA,∴∠ACF=2∠FEA,设∠ECD=x,则∠ACF=2x,∴∠ACD=3x,∴3x+21°=90°,解得:x=23°.故答案为:23°.点睛:本题考查了矩形的性质、平行线的性质、直角三角形的性质、三角形的外角性质;熟练掌握矩形的性质和平行线的性质是解决问题的关键.三、解答题(共78分)19、(1)1.(2)当该纪念品的销售单价为2元时,该产品的当天销售利润是2613元.(3)不能,理由见解析.【解析】

(1)根据当天销售量=283﹣13×增加的销售单价,即可求出结论;(2)设该纪念品的销售单价为x元(x>43),则当天的销售量为[283﹣(x﹣43)×13]件,根据当天的销售利润=每件的利润×当天销售量,即可得出关于x的一元二次方程,解之取其较大值即可得出结论;(3)设该纪念品的销售单价为y元(y>43),则当天的销售量为[283﹣(y﹣43)×13]件,根据当天的销售利润=每件的利润×当天销售量,即可得出关于y的一元二次方程,由该方程根的判别式△=﹣36<3,可得出该方程无解,进而可得出该纪念品的当天销售利润不能达到3733元.【详解】解:(1)283﹣(45﹣43)×13=1(件).故答案为:1.(2)设该纪念品的销售单价为x元(x>43),则当天的销售量为[283﹣(x﹣43)×13]件,依题意,得:(x﹣33)[283﹣(x﹣43)×13]=2613,整理,得:x2﹣98x+11=3,整理,得:x1=39(不合题意,舍去),x2=2.答:当该纪念品的销售单价为2元时,该产品的当天销售利润是2613元.(3)不能,理由如下:设该纪念品的销售单价为y元(y>43),则当天的销售量为[283﹣(y﹣43)×13]件,依题意,得:(y﹣33)[283﹣(y﹣43)×13]=3733,整理,得:y2﹣98y+2413=3.∵△=(﹣98)2﹣4×1×2413=﹣36<3,∴该方程无解,即该纪念品的当天销售利润不能达到3733元.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.20、.【解析】

设BC=x,则AB=2x,再根据勾股定理求出x的值,进而得出结论.【详解】∵在Rt△ABC中,∠C=90°,∠A=30°,AC=2,

∴设BC=x,则AB=2x,

∵AC2+BC2=AB2,即22+x2=(2x)2,

解得x=,

∴AB=2x=.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.21、(1)详见解析;(2)【解析】

(1)由,可知四边形是平行四边形,由直角三角形中斜边的中线等于底边的一半可知,依据菱形的判定即可求证.(2)过A作于点H,AH为菱形的高,菱形的面积可用两种方式表示出来,而CD=CE,所以EF=AH,因而只要求出三角形ABC面积的两种求法确定AH即可.【详解】证明:(1)∵,,∴四边形是平行四边形.∵,E是的中点,∴=AD.∴四边形是菱形.(2)过A作于点H,∵,,,∴.∵,∴.∵点E是的中点,,四边形是菱形,∴.∵,∴.【点睛】本题主要考查了菱形的判定及菱形中的面积问题,能够熟练掌握菱形的判定定理、灵活的表示菱形、三角形的面积是解题的关键.22、(1)到2020年底,全省5G基站的数量是6万座;(2)2020年底到2022年底,全省5G基站数量的年平均增长率为.【解析】

(1)2020年全省5G基站的数量=目前广东5G基站的数量×4,即可求出结论;(2)设2020年底到2022年底,全省5G基站数量的年平均增长率为x,根据2020年底及2022年底全省5G基站数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【详解】解:(1)由题意可得:到2020年底,全省5G基站的数量是(万座).答:到2020年底,全省5G基站的数量是6万座.(2)设年平均增长率为,由题意可得:,解得:,(不符合,舍去)答:2020年底到2022年底,全省5G基站数量的年平均增长率为.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.23、(1)>,>,>,=;(1)如果a、b是两个实数,则有a1+b1≥1ab;(3)证明见解析.【解析】

(1)通过计算可比较上述算式的大小;

(1)由于(a-b)1≥0,所以a1+b1≥1ab

(3)证明结论时根据完全平方的计算结果是非负数证明即可.【详解】解:(1)51+31>1×5×3;31+11>1×3×1.(﹣3)1+11>1×(﹣3)×1;(﹣4)1+(﹣4)1=1×(﹣4)×(﹣4)(1)一般结论是:如果a、b是两个实数,则有a1+b1≥1ab;(3)∵(a﹣b)1≥0,∴a1﹣1ab+b1≥0,∴a1+b1≥1ab.【点睛】本题主要考查实数的大小的比较数字的变化规律,通过阅读题目,发现规律实质上是完全平方公式的变形:因为(a-b)1≥0,所以a1+b1≥1ab24、3m,6057-6.【解析】

先根据分式混合运算的法则把原式进行化简,再把m的值代入进行计算即可.【详解】解:原式==3m,

当m=2019-2时,

原式=3×2019-6

=6057-6.【点睛】本题考查分式的化简求值,解题的关键是熟练运用分式混合运算的法则,本题属于基础题型.25、(1)EO⊥FO,EO=FO;理由见解析;(2)①;②=2【解析】

(1)由正方形的性质可得BO=CO,∠ABO=∠ACB=45°,∠BOC=90°,由“SAS”可证△BEO≌△CFO,可得OE=OF,∠BOE=∠COF,可证EO⊥FO;(2)①由等腰直角三角形的性质可得∠EOG的度数;②由∠EOF=∠ABF=90°,可得点E,点O,点F,点B四点共圆,可得∠EOB=∠BFE,通过证明△BOH∽△BIO,可得,即可得结论.【详解】解:(1)OE=OF,OE⊥OF,连接AC,BD,∵点O是正方形ABCD的中心∴点O是AC,BD的交点∴BO=CO,∠ABO=∠ACB=45°,∠BOC=90°∵C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论