湖北省洪湖市瞿家湾中学2024年八年级数学第二学期期末联考试题含解析_第1页
湖北省洪湖市瞿家湾中学2024年八年级数学第二学期期末联考试题含解析_第2页
湖北省洪湖市瞿家湾中学2024年八年级数学第二学期期末联考试题含解析_第3页
湖北省洪湖市瞿家湾中学2024年八年级数学第二学期期末联考试题含解析_第4页
湖北省洪湖市瞿家湾中学2024年八年级数学第二学期期末联考试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省洪湖市瞿家湾中学2024年八年级数学第二学期期末联考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.梅凯种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10千克以上(不含l0千克)的种子,超过l0千克的那部分种子的价格将打折,并依此得到付款金额y(单位:元)与一次购买种子数量x(单位:千克)之间的函数关系如图所示.下列四种说法:①一次购买种子数量不超过l0千克时,销售价格为5元/千克;②一次购买30千克种子时,付款金额为100元;③一次购买10千克以上种子时,超过l0千克的那部分种子的价格打五折:④一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱.其中正确的个数是A.1个 B.2个 C.3个 D.4个2.下列各式从左到右是分解因式的是()A.a(x+y)=ax+ayB.10x2﹣5x=5x(2x﹣1)C.8m3n=2m3•4nD.t2﹣16+3t=(t+4)(t﹣4)+3t3.等腰三角形的两条边长分别为3和4,则其周长等于()A.10 B.11 C.10或11 D.不确定4.下列说法中,正确的是A.相等的角是对顶角 B.有公共点并且相等的角是对顶角C.如果∠1和∠2是对顶角,那么∠1=∠2 D.两条直线相交所成的角是对顶角5.下列各数中,没有平方根的是()A.65 B. C. D.6.在平面直角坐标系中,若点P的坐标为(﹣3,2),则点P所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.若分式的值为零,则x等于()A.0 B.2 C.±2 D.﹣28.如图,在矩形ABCD中,AB=1,BC=2A.2-12 B.3-129.弹簧挂上物体后伸长,已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表:下列说法错误的是()物体的质量(kg)012345弹簧的长度(cm)1012.51517.52022.5A.在没挂物体时,弹簧的长度为10cmB.弹簧的长度随物体的质量的变化而变化,物体的质量是因变量,弹簧的长度是自变量C.如果物体的质量为mkg,那么弹簧的长度ycm可以表示为y=2.5m+10D.在弹簧能承受的范围内,当物体的质量为4kg时,弹簧的长度为20cm10.下列四组线段中,可以组成直角三角形的是()A.4,5,6 B.3,4,5 C.5,6,7 D.1,,311.已知是方程组的解,则a+b的值为()A.2 B.-2 C.4 D.-412.“垃圾分类,从我做起”,以下四幅图案分别代表四类可回收垃圾,其中是中心对称图形的是()A. B. C. D.二、填空题(每题4分,共24分)13.观察:①,②,③,…,请你根据以上各式呈现的规律,写出第6个等式:__________.14.一运动员推铅球,铅球经过的路线为如图所示的抛物线,则铅球所经过的路线的函数表达式为________15.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是__________.16.在平面直角坐标系中,已知坐标,将线段(第一象限)绕点(坐标原点)按逆时针方向旋转后,得到线段,则点的坐标为____.17.如图所示,折叠矩形的一边AD,使点D落在边BC的点F处,已知AB=8cm,BC=10cm,则EC的长为_____cm.18.若直线y=x+h与y=2x+3的交点在第二象限,则h的取值范围是_____.三、解答题(共78分)19.(8分)某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用分别为每吨15元和30元,设从C市运往B市的救灾物资为x吨.(1)请填写下表;(2)设C、D两市的总运费为W元,求W与x之间的函数关系式,并写出自变量x的取值范围;(3)经过抢修,从C市到B市的路况得到了改善,缩短了运输时间,运费每吨减少n元(n>0),其余路线运费不变,若C、D两市的总运费的最小值不小于10080元,求n的取值范围.20.(8分)如图,点是等边内一点,,,将绕点顺时针方向旋转得到,连接,.(1)当时,判断的形状,并说明理由;(2)求的度数;(3)请你探究:当为多少度时,是等腰三角形?21.(8分)已知,梯形ABCD中,AD∥BC,∠ABC=90°,AB=3,BC=10,AD=5,M是BC边上的任意一点,联结DM,联结AM.(1)若AM平分∠BMD,求BM的长;(2)过点A作AE⊥DM,交DM所在直线于点E.①设BM=x,AE=y求y关于x的函数关系式;②联结BE,当△ABE是以AE为腰的等腰三角形时,请直接写出BM的长.22.(10分)已知:如图,,,求的面积.23.(10分)如图所示为一种吸水拖把,它由吸水部分、拉手部分和主干部分构成.小明在拖地中发现,拉手部分在一拉一放的过程中,吸水部分弯曲的角度会发生变化。设拉手部分移动的距离为吸水部分弯曲所成的角度为,经测量发现:拉手部分每移动,吸水部分角度变化.请回答下列问题:(1)求出关于的函数解析式;(2)当吸水部分弯曲所成的角度为时,求拉手部分移动的距离.24.(10分)(1)计算:;(2)解方程:.25.(12分)如图,在平面直角坐标系xOy中,点A(,0),点B(0,1),直线EF与x轴垂直,A为垂足。(1)若线段AB绕点A按顺时针方向旋转到AB′的位置,并使得AB与AB′关于直线EF对称,请你画出线段AB所扫过的区域(用阴影表示);(2)计算(1)中线段AB所扫过区域的面积。26.如图,矩形ABCD中,AB=6,BC=8,点E是射线CB上的一个动点,把△DCE沿DE折叠,点C的对应点为C'.(1)若点C'刚好落在对角线BD上时,BC'=;(2)当BC'∥DE时,求CE的长;(写出计算过程)(3)若点C'刚好落在线段AD的垂直平分线上时,求CE的长.

参考答案一、选择题(每题4分,共48分)1、D【解析】①由图可知,购买10千克种子需要50元,由此求出一次购买种子数量不超过10千克时的销售价格;②由图可知,超过10千克以后,超过的那部分种子的单价降低,而由购买50千克比购买10千克种子多付100元,求出超过10千克以后,超过的那部分种子的单价,再计算出一次购买30千克种子时的付款金额;③根据一次购买10千克以上种子时,超过10千克的那部分种子的价格为2.5元/千克,而2.5÷5=0.5,所以可以求出打的折数;④先求出一次购买40千克种子的付款金额为125元,再求出分两次购买且每次购买20千克种子的付款金额为150元,然后用150减去125,即可求出一次购买40千克种子比分两次购买且每次购买20千克种子少花的钱数.解:①由图可知,一次购买种子数量不超过10千克时,销售价格为:50÷10=5元/千克,正确;②由图可知,超过10千克的那部分种子的价格为:(150-50)÷(50-10)=2.5元/千克,所以,一次购买30千克种子时,付款金额为:50+2.5×(30-10)=100元,正确;③由于一次购买10千克以上种子时,超过10千克的那部分种子的价格为2.5元/千克,而2.5÷5=0.5,所以打五折,正确;④由于一次购买40千克种子需要:50+2.5×(40-10)=125元,分两次购买且每次购买20千克种子需要:2×[50+2.5×(20-10)]=150元,而150-125=25元,所以一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱,正确.故选D.2、B【解析】

根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是整式的乘法,故A错误;B、把一个多项式转化成几个整式积的形式,故B符合题意;C、是乘法交换律,故C不符合题意;D、没把一个多项式转化成几个整式积的形式,故D不符合题意;故选B.【点睛】本题考查了因式分解的意义,利用因式分解的意义是解题关键.3、C【解析】

根据等腰三角形的性质即可判断.【详解】∵等腰三角形的两条边长分别为3和4∴第三边为3或4,故周长为10或11,故选C【点睛】此题主要考查等腰三角形的周长,解题的关键是熟知等腰三角形的性质.4、C【解析】

本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.由此逐一判断.【详解】A、对顶角是有公共顶点,且两边互为反向延长线,相等只是其性质,错误;

B、对顶角应该是有公共顶点,且两边互为反向延长线,错误;

C、角的两边互为反向延长线的两个角是对顶角,符合对顶角的定义,正确.

D、两条直线相交所成的角有对顶角、邻补角,错误;

故选C.【点睛】要根据对顶角的定义来判断,这是需要熟记的内容.5、C【解析】

根据平方都是非负数,可得负数没有平方根.【详解】A、B、D都是正数,故都有平方根;

C是负数,故C没有平方根;

故选:C.【点睛】考查平方根,正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.6、B【解析】试题分析:第一象限点的坐标为(+,+);第二象限点的坐标为(-,+);第三象限点的坐标为(-,-);第四象限点的坐标为(+,-),则点P在第二象限.考点:平面直角坐标系中的点7、D【解析】

分式的值是1的条件是:分子为1,分母不为1.【详解】∵x2-4=1,

∴x=±2,

当x=2时,2x-4=1,∴x=2不满足条件.

当x=-2时,2x-4≠1,∴当x=-2时分式的值是1.

故选:D.【点睛】本题考查了分式值为零的条件,解题的关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.8、C【解析】

根据对称性可知:BE=FE,∠AFE=∠ABF=90°,又因为∠C=∠C,所以ΔCEF∽ΔCAB,根据相似性可得出:EFAB=CE【详解】解:设BE的长为x,则BE=FE=x、CE=2-x,在Rt△ABC中,AC=AB2+BC∵∠FCE=∠BCA,∠AFE=∠ABE=90°,∴△CEF∽△CAB(两对对应角相等的两三角形相似),∴EF∴BE=EF=CEAC×AB=2-x5∴BE=x=5-1故选:C.【点睛】本题主要考查图形的展开与折叠和矩形的性质,同时学生们还要把握勾股定理和相似三角形的性质知识点.9、B【解析】

因为表中的数据主要涉及到弹簧的长度和所挂物体的重量,所以反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量;由已知表格得到弹簧的长度是y=10+2.5m,质量为mkg,y弹簧长度;弹簧的长度有一定范围,不能超过.【详解】解:A.在没挂物体时,弹簧的长度为10cm,根据图表,当质量m=0时,y=10,故此选项正确,不符合题意;B、反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量,故此选项错误,符合题意;C、当物体的质量为mkg时,弹簧的长度是y=12+2.5m,故此选项正确,不符合题意;D、由C中y=10+2.5m,m=4,解得y=20,在弹簧的弹性范围内,故此选项正确,不符合题意;故选B.点评:此题考查了函数关系式,主要考查了函数的定义和结合几何图形列函数关系式.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.10、B【解析】

将各选项中长度最长的线段长求出平方,剩下的两线段长求出平方和,若两个结果相等,利用勾股定理的逆定理得到这三条线段能组成直角三角形;反之不能组成直角三角形.【详解】A、∵42+52=41;62=36,

∴42+52≠62,

则此选项线段长不能组成直角三角形;B、∵32+42=9+16=85;52=25,

∴32+42=52,

则此选项线段长能组成直角三角形;

C、∵52+62=61;72=49,

∴52+62≠72,

则此选项线段长不能组成直角三角形;

D、∵12+()2=3;32=9,

∴12+()2≠32,

则此选项线段长不能组成直角三角形;故选B【点睛】此题考查了勾股定理的逆定理,熟练掌握勾股定理的逆定理是解本题的关键.11、B【解析】

∵是方程组的解∴将代入①,得a+2=−1,∴a=−3.把代入②,得2−2b=0,∴b=1.∴a+b=−3+1=−2.故选B.12、C【解析】

根据中心对称图形的定义:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称,逐一判定即可.【详解】A选项,是轴对称图形,不符合题意;B选项,是轴对称图形,不符合题意;C选项,是中心对称图形,符合题意;D选项,是轴对称图形,不符合题意;故选:C.【点睛】此题主要考查对中心对称图形的理解,熟练掌握,即可解题.二、填空题(每题4分,共24分)13、【解析】

第n个等式左边的第1个数为2n+1,根号下的数为n(n+1),利用完全平方公式得到第n个等式右边的式子为(n≥1的整数),直接利用已知数据得出数字变化规律,进而得出答案.【详解】解:∵①,

②,

③,……

∴第n个式子为:,

∴第6个等式为:

故答案为:.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.14、【解析】

由抛物线的顶点坐标为(4,3),可设其解析式为,再将(0,)代入求出a的值即可.【详解】解:由图知,抛物线的顶点坐标为(4,3),故设抛物线解析式为,将点(0,)代入,得:,解得,则抛物线解析式为,故答案为:.【点睛】本题考查了待定系数法求二次函数的解析式:一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.15、k>﹣1且k≠1.【解析】

由关于x的一元二次方程kx2-2x-1=1有两个不相等的实数根,即可得判别式△>1且k≠1,则可求得k的取值范围.【详解】解:∵关于x的一元二次方程kx2﹣2x﹣1=1有两个不相等的实数根,∴△=b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>1,∴k>﹣1,∵x的一元二次方程kx2﹣2x﹣1=1∴k≠1,∴k的取值范围是:k>﹣1且k≠1.故答案为:k>﹣1且k≠1.【点睛】此题考查了一元二次方程根的判别式的应用.此题比较简单,解题的关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>1⇔方程有两个不相等的实数根;(2)△=1⇔方程有两个相等的实数根;(3)△<1⇔方程没有实数根.16、【解析】

根据旋转的性质求出点的坐标即可.【详解】如图,将点B绕点(坐标原点)按逆时针方向旋转后,得到点点的坐标为故答案为:.【点睛】本题考查了坐标点的旋转问题,掌握旋转的性质是解题的关键.17、2【解析】试题解析:∵D,F关于AE对称,所以△AED和△AEF全等,∴AF=AD=BC=10,DE=EF,设EC=x,则DE=8-x.∴EF=8-x,在Rt△ABF中,BF==6,∴FC=BC-BF=1.在Rt△CEF中,由勾股定理得:CE2+FC2=EF2,即:x2+12=(8-x)2,解得x=2.∴EC的长为2cm.考点:1.勾股定理;2.翻折变换(折叠问题).18、<h<1【解析】

将两直线解析式联立,求得交点坐标,然后根据交点在第二象限,列出一元一次不等式组,求解即可.【详解】将两直线解析式联立得:解得∵交点在第二象限∴∴<h<1故答案为:<h<1.【点睛】本题考查了二元一次方程组的解法及一元一次不等式组的解法,本题难度不大.三、解答题(共78分)19、(1)如表见解析;(2)W=-10x+11200,;(1)【解析】

(1)根据题意可以将表格中的空缺数据补充完整;(2)根据题意可以求得w与x的函数关系式,并写出x的取值范围;(1)根据题意,利用分类讨论的数学思想可以解答本题.【详解】(1)∵C市运往B市x吨,∴C市运往A市(240-x)吨,D市运往B市(100-x)吨,D市运往A市260-(100-x)=(x-40)吨,故答案为240-x、x-40、100-x;(2)由题意可得,w=20(240-x)+25x+15(x-40)+10(100-x)=-10x+11200,又得40≤x≤240,∴w=10x+11200(40≤x≤240);(1)由题意可得,w=20(240-x)+(25-n)x+15(x-40)+10(100-x)=-(n+10)x+11200,∵n>0,∴-(n+10)<0,∴W随x的增大而减小当x取最大值240时,W最小值=-(n+10)×240+11200≥10080,即:-(n+10)×240+11200≥10080解得,n≤1,由上可得,m的取值范围是0<n≤1.【点睛】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用函数和不等式的性质解答.20、(1)为直角三角形,理由见解析;(2);(3)当为或或时,为等腰三角形.【解析】

(1)由旋转可以得出和均为等边三角形

,再根据求出,进而可得为直角三角形;(2)因为进而求得,根据,即可求出求的度数;(3)由条件可以表示出∠AOC=250°-a,就有∠AOD=190°-a,∠ADO=a-60°,当∠DAO=∠DOA,∠AOD=ADO或∠OAD=∠ODA时分别求出a的值即可.【详解】解:(1)为直角三角形,理由如下:绕顺时针旋转得到,和均为等边三角形,,,,,为直角三角形;(2)由(1)知:,,,,;(3)∵∠AOB=110°,∠BOC=α∴∠AOC=250°-a.∵△OCD是等边三角形,∴∠DOC=∠ODC=60°,∴∠ADO=a-60°,∠AOD=190°-a,当∠DAO=∠DOA时,2(190°-a)+a-60°=180°,解得:a=140°当∠AOD=ADO时,190°-a=a-60°,解得:a=125°,当∠OAD=∠ODA时,190°-a+2(a-60°)=180°,解得:a=110°∴α=110°,α=140°,α=125°.【点睛】本题考查了等边三角形的判定与性质的运用,旋转的性质的运用,直角三角形的判定,全等三角形的判定及性质的运用,等腰三角形的判定及性质的运用,解答时证明三角形全等是关键.21、(1)1或3;(2)①y=15x2-10x+34x2-10x+34.【解析】

(1)考虑∠DMB为锐角和钝角两种情况即可解答;(2)①作MH⊥AD于H,根据勾股定理,用被开方式含x的二次根式表示DM,根据△ADM面积的两种算法建立等式,即可求出y关于x的函数关系式;②分AB=AE和EA=EB两种情况讨论求解.【详解】解:(1)如图1中,作DH⊥BC于H.则四边形ABHD是矩形,AD=BH=5,AB=DH=2.当MA平分∠DMB时,易证∠AMB=∠AMD=∠DAM,可得DA=DM=5,在Rt△DMH中,DM=AD=5,DH=2,∴MH=DM2-D∴BM=BH-MH=1,当AM′平分∠BM′D时,同法可证:DA=DM′,HM′=1,∴BM′=BH+HM′=3.综上所述,满足条件的BM的值为1或3.(2)①如图2中,作MH⊥AD于H.在Rt△DMH中,DM=32+(5-x)∵S△ADM=12•AD•MH=12•DM•∴5×2=y•x∴y=15x②如图2中,当AB=AE时,y=2,此时5×2=2x2解得x=1或3.如图1中,当EA=EB时,DE=EM,∵AE⊥DM,∴DA=AM=5,在Rt△ABM中,BM=52综上所述,满足条件的BM的值为1或3或1.故答案为:(1)1或3;(2)①y=15x2-10x+34x2-10x+34.【点睛】本题考查了直角梯形的性质,矩形的判定与性质,勾股定理,无理方程,等腰三角形的性质.22、14【解析】试题分析:构造矩形,用矩形的面积减去3个直角三角形的面积即可求得.试题解析:如图,构造矩形,,,,,.23、(1);(2)拉手部分移动的距离为或.【解析】

(1)根据拉手部分每移动,吸水部分角度变化,在拉手向上运动时,吸水部分弯曲所成的角度由180°到0°变化,拉手再向下时,吸水部分弯曲所成的角度由°到180°变化,由此即可求出关于的函数解析式;(2)把代入(1)中所求的函数解析式,求出的值即可.【详解】解:(1)当在拉手向上运动时,拉手部分最大移动的距离为9cm,,当拉手由顶端向下运动时即返回时,.综上所述:(2)由题意可知:当①,②,当吸水部分弯曲的角度为时,拉手部分移动的距离为或【点睛】本题考查了一次函数的应用,理解题意得出关于的函数解析式是解题的关键.24、(1)-2;(2)无解【解析】

(1)原式利用零指数幂、负整数指数幂法则,平方根及立方根定义计算即可求出值;

(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:(1)原式;(2)方程两边同时乘以,得:,解得:,检验:把代入得:,则是增根,原分式方程无解.【点睛】此题考查了解分式方程,以及实数的运算,熟练掌握运算法

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论