2024年山东省沂水县联考八年级下册数学期末检测模拟试题含解析_第1页
2024年山东省沂水县联考八年级下册数学期末检测模拟试题含解析_第2页
2024年山东省沂水县联考八年级下册数学期末检测模拟试题含解析_第3页
2024年山东省沂水县联考八年级下册数学期末检测模拟试题含解析_第4页
2024年山东省沂水县联考八年级下册数学期末检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年山东省沂水县联考八年级下册数学期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,平行四边形ABCD中,EF∥BC,GH∥AB,EF,GH相交于点O,则图中有平行四边形()A.4个 B.5个 C.8个 D.9个2.如图,在△ABC中,BC=15,B1、B2、…B9、C1、C2、…C9分别是AB、AC的10等分点,则B1C1+B2C2+…+B9C9的值是()A.45 B.55 C.67.5 D.1353.一个直角三角形的两边长分别为,则第三边长可能是()A. B. C.或2 D.4.如图,有两个可以自由转动的转盘(每个转盘均被等分),同时转动这两个转盘,待转盘停止后,两个指针同时指在偶数上的概率是()A. B. C. D.5.对于一次函数,下列结论①随的增大而减小;②函数的图象不经过第三象限;③函数的图象向下平移4个单位得;④函数的图象与轴的交点坐标是.其中,错误的有()A.1个 B.2个 C.3个 D.4个6.要使分式意义,则字母x的取值范围是()A.x≠0 B.x<0 C.x>2 D.x≠27.如果式子有意义,那么x的范围在数轴上表示为()A. B.C. D.8.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是()秒A.2.5 B.3 C.3.5 D.49.方程x(x-2)=0的根是()A.x=0 B.x=2 C.x1=0,x2=2 D.x1=0,x2=-210.下列事件中,是必然事件的是()A.3天内下雨 B.打开电视机,正在播放广告C.367人中至少有2人公历生日相同 D.a抛掷1个均匀的骰子,出现4点向上11.某特警部队为了选拔“神枪手”,举行了1000米射击比赛,最后甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99.68环,甲的方差是0.28,乙的方差是是0.1.则下列说法中,正确的是()A.甲的成绩比乙的成绩稳定 B.乙的成绩比甲的成绩稳定C.甲、乙两人成绩的稳定性相同 D.无法确定谁的成绩更稳定12.如图,图(1)、图(2)、图(3),图(4)分别由若干个点组成,照此规律,若图(n)中共有129个点,则()A.8 B.9 C.10 D.11二、填空题(每题4分,共24分)13.如图,在正方形ABCD的右边作等腰三角形ADE,AD=AE,,连BE,则__________.14.已知a2-2ab+b2=6,则a-b=_________.15.函数中,自变量的取值范围是.16.根据图中的程序,当输入时,输出的结果______.17.如图,菱形ABCD的对角线AC、BD相交于点O,M、N分别为边AB、BC的中点,连接MN.若MN=1,BD,则菱形的周长为________.18.在菱形中,若,,则菱形的周长为________.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,直线的表达式为,点,的坐标分别为,,直线与直线相交于点.(1)求直线的表达式;(2)求点的坐标;20.(8分)小华思考解决如下问题:原题:如图1,点P,Q分别在菱形ABCD的边BC,CD上,∠PAQ=∠B,求证:AP=AQ.(1)小华进行探索,若将点P,Q的位置特殊化:把∠PAQ绕点A旋转得到∠EAF,使AE⊥BC,点E、F分别在边BC、CD上,如图1.此时她证明了AE=AF,请你证明;(1)由以上(1)的启发,在原题中,添加辅助线:如图3,作AE⊥BC,AF⊥CD,垂足分别为E,F.请你继续完成原题的证明;(3)如果在原题中添加条件:AB=4,∠B=60°,如图1,求四边形APCQ的周长的最小值.21.(8分)在下列网格图中,每个小正方形的边长均为个单位长度.已知在网格图中的位置如图所示.(1)请在网格图中画出向右平移单位后的图形,并直接写出平移过程中线段扫过的面积;(2)请在网格图中画出以为对称中心的图形.(保留作图痕迹)22.(10分)为了提高学生书写汉字的能力.增强保护汉字的意识,我区举办了“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:组别成绩x分频数(人数)第1组25≤x<304第2组30≤x<356第3组35≤x<4014第4组40≤x<45a第5组45≤x<5010请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?23.(10分)如图,在矩形ABCD中,点E、F在边AD上,AF=DE,连接BF、CE.(1)求证:∠CBF=∠BCE;(2)若点G、M、N在线段BF、BC、CE上,且FG=MN=CN.求证:MG=NF;(3)在(2)的条件下,当∠MNC=2∠BMG时,四边形FGMN是什么图形,证明你的结论.24.(10分)如图,矩形的对角线交于点,且.(1)求证:四边形是菱形;(2)若,求菱形的面积.25.(12分)如图,已知直线:与x轴,y轴的交点分别为A,B,直线:与y轴交于点C,直线与直线的交点为E,且点E的横坐标为2.(1)求实数b的值;(2)设点D(a,0)为x轴上的动点,过点D作x轴的垂线,分别交直线与直线于点M、N,若以点B、O、M、N为顶点的四边形是平行四边形,求a的值.26.某化妆品公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只拿销售提成;方案二:底薪加销售提成.设x(件)是销售商品的数量,y(元)是销售人员的月工资.如图所示,y1为方案一的函数图象,y2为方案二的函数图象.已知每件商品的销售提成方案二比方案一少8元.从图中信息解答如下问题(注:销售提成是指从销售每件商品得到的销售额中提取一定数量的费用):(1)求y1的函数解析式;(2)请问方案二中每月付给销售人员的底薪是多少元?(3)小丽应选择哪种销售方案,才能使月工资更多?

参考答案一、选择题(每题4分,共48分)1、D【解析】

首先根据已知条件找出图中的平行线段,然后根据两组对边分别平行的四边形是平行四边形,来判断图中平行四边形的个数.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,CD∥AB,又∵EF∥BC,GH∥AB,∴∴AB∥GH∥CD,AD∥EF∥BC,∴平行四边形有:□ABCD,□ABHG,□CDGH,□BCFE,□ADFE,□AGOE,□BEOH,□OFCH,□OGDF,共9个.即共有9个平行四边形.故选D.【点睛】本题考查平行四边形的判定与性质,解题的关键是根据已知条件找出图中的平行线段.2、C【解析】

当B1、C1是AB、AC的中点时,B1C1=BC;当B1,B2,C1,C2分别是AB,AC的三等分点时,B1C1+B2C2=BC+BC;…当B1,B2,C1,…,Cn分别是AB,AC的n等分点时,B1C1+B2C2+…+Bn﹣1Bn﹣1=BC+BC+…+BC=BC=7.1(n﹣1);当n=10时,7.1(n﹣1)=67.1;故B1C1+B2C2+…+B9C9的值是67.1.故选C.3、C【解析】

本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边8既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求解.【详解】解:设第三边为x,

①当8是直角边,则62+82=x2解得x=10,

②当8是斜边,则62+x2=82,解得x=2.

∴第三边长为10或2.

故选:C.【点睛】本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.4、B【解析】

根据题意画出树状图,然后由树状图求得所有可能的结果与两个指针同时指在偶数上的情况,再利用概率公式即可求得答案.【详解】根据题意列树状图得:∵共有25可能出现的情况,两个指针同时指在偶数上的情况有6种,∴两个指针同时指在偶数上的概率为:,故选B【点睛】本题考查了列表法与树状图法求概率的知识,概率=所求情况数与总情况数之比.熟练掌握列表法与树状图法及概率公式是解题关键.5、A【解析】

根据一次函数的性质对①②进行判断;根据一次函数的几何变换对③进行判断.根据一次函数图象上点的坐标特征对④进行判断;【详解】①k=−2,函数值随自变量的增大而减小,正确;②k=−2,b=4,函数的图象经过第一、二、四象限,不经过第三象限,正确;③函数的图象向下平移4个单位长度得y=−2x的图象,正确;④函数的图象与y轴的交点坐标是(0,4),故错误;故选:A.【点睛】本题考查了一次函数的性质:当k>0,y随x的增大而增大,函数从左到右上升;当k<0,y随x的增大而减小,函数从左到右下降.也考查了一次函数图象的几何变换.6、D【解析】

本题主要考查分式有意义的条件:分母不能为1.【详解】要使分式有意义,则x﹣2≠1,解得x≠2.故选:D.【点睛】本题考查的是分式有意义的条件:当分母不为1时,分式有意义.7、D【解析】

根据二次根式有意义的条件可得x﹣1≥0,求出不等式的解集,再在数轴上表示.【详解】由题意得:x﹣1≥0,解得:x≥1,在数轴上表示为:故选D.【点睛】本题主要考查了二次根式有意义的条件,以及在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.8、D【解析】

解:设运动的时间为x,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,当△APQ是等腰三角形时,AP=AQ,AP=20﹣3x,AQ=2x,即20﹣3x=2x,解得x=1.故选D.【点睛】此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,此题涉及到动点,有一定的拔高难度,属于中档题.9、C【解析】试题分析:∵x(x-1)=0∴x=0或x-1=0,解得:x1=0,x1=1.故选C.考点:解一元二次方程-因式分解法.10、C【解析】

根据随机事件和必然事件的定义分别进行判断.【详解】A.3天内会下雨为随机事件,所以A选项错误;B.打开电视机,正在播放广告,是随机事件,所以B选项错误;C.367人中至少有2人公历生日相同是必然事件,所以C选项正确;D.a抛掷1个均匀的骰子,出现4点向上,是随机事件,所以D选项错误.故选C.【点睛】此题考查随机事件,解题关键在于掌握其定义.11、B【解析】方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越小,说明数据的波动越小,越稳定.因此,∵0.1<0.28,∴乙的成绩比甲的成绩稳定.故选B.12、C【解析】

仔细观察图形,找到图形的变化规律,利用规律求解.【详解】解:图(1)有1×2+2×1−1=3个点;图(2)有2×3+2×2−1=9个点;图(3)有3×4+2×3−1=17个点;图(4)有4×5+2×4−1=27个点;…∴图(n)有n×(n+1)+2×n−1=n2+3n−1个点;令n2+3n−1=129,解得:n=10或n=−13(舍去)故选:C.【点睛】本题考查了图形的变化类问题,是一道找规律的题目,这类题型在中考中经常出现,解题的关键是能够找到图形变化的规律,难度不大.二、填空题(每题4分,共24分)13、45°【解析】

先证明AB=AE,求得∠AEB,由AD=AE,∠DAE=50°,求得∠AED,进而由角的和差关系求得结果.【详解】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵AD=AE,∠DAE=50°,∴AB=AE,∠ADE=∠AED=65°,∠BAE=140°,∴∠ABE=∠AEB=20°,∴∠BED=65°−20°=45°,故答案为:45°.【点睛】本题主要考查了正方形的性质,等腰三角形的性质,三角形内角和定理,关键是求得∠AEB和∠AED的度数.14、【解析】由题意得(a-b)2="6,"则=15、x≠1【解析】,x≠116、2【解析】

根据题意可知,该程序计算是将x代入y=−2x+1.将x=5输入即可求解.【详解】∵x=5>3,∴将x=5代入y=−2x+1,解得y=2.故答案为:2.【点睛】解题关键是弄清题意,根据题意把x的值代入,按程序一步一步计算.17、8【解析】

由三角形中位线的性质可求出AC的长,根据菱形的性质可得OA、OB的长,利用勾股定理可求出AB的长,即可求出菱形的周长.【详解】∵M、N分别为边AB、BC的中点,MN=1,∴AC=2MN=2,∵AC、BD是菱形ABCD的对角线,BD=2,∴OA=AC=1,OB=BD=,∴AB==2,∴菱形的周长=4AB=8,故答案为:8【点睛】本题考查了菱形的性质、三角形中位线的性质及勾股定理,菱形的四条边相等,对角线互相垂直平分且平分对角;三角形中位线平行于第三边且等于第三边的一半.熟练掌握相关性质是解题关键.18、8【解析】

由菱形的,可得∠BAD=∠BCD=60°,则在Rt△AOB中根据勾股定理以及30°所对的直角边是斜边的一半,列方程可以求出AB的长,即可求出菱形周长.【详解】解:如图,∵ABCD为菱形∴∠BAD=∠BCD,BD⊥AC,O为AC、BD中点又∵∴∠BAD=∠BCD=60°∴∠BAC=∠BAD=30°在Rt△AOB中,BO=AB,设BO=x,根据勾股定理可得:解得x=1∴AB=2x=2∴菱形周长为8故答案为8【点睛】本题考查菱形的性质综合应用,灵活应用菱形性质是解题关键.三、解答题(共78分)19、(1);(2)【解析】

(1)设直线的表达式为y=kx+b,利用待定系数法即可求出直线的表达式;(2)将直线AB的表达式和直线的表达式联立,解方程即可求出交点P坐标.【详解】解:(1)设直线的表达式为y=kx+b,将点A和点B的坐标代入,得解得:∴直线的表达式为;(2)将直线AB的表达式和直线的表达式联立,得解得:∴直线与直线的交点的坐标为【点睛】此题考查的是求一次函数的表达式和两条直线的交点坐标,掌握用待定系数法求一次函数的表达式和将两个一次函数的表达式联立求交点坐标是解决此题的关键.20、(1)见解析;(1)见解析;(3).【解析】

(1)根据四边形ABCD是菱形,首先证明∠B=∠D,AB=AD,再结合题意证明,进而证明△AEB≌△AFD,即可证明AE=AF.(1)根据(1)的证明,再证明△AEP≌△AFQ(ASA),进而证明AP=AQ.(3)根据题意连接AC,则可证明△ABC为等边三角形,再计算AE的长度,则可计算长APCQ的周长的最小值.【详解】(1)证明:如图1,∵四边形ABCD是菱形,∴∠B+∠C=180°,∠B=∠D,AB=AD,∵∠EAF=∠B,∴∠EAF+∠C=180°,∴∠AEC+∠AFC=180°,∵AE⊥BC,∴AF⊥CD,在△AEB和△AFD中,,∴△AEB≌△AFD(AAS),∴AE=AF;(1)证明:如图3,由(1)得,∠PAQ=∠EAF=∠B,AE=AF,∴∠EAP=∠FAQ,在△AEP和△AFQ中,,∴△AEP≌△AFQ(ASA),∴AP=AQ;(3)解:如图2,连接AC,∵∠ABC=60°,BA=BC=2,∴△ABC为等边三角形,∵AE⊥BC,∴BE=EC=1,同理,CF=FD=1,∴AE==1,∴四边形APCQ的周长=AP+PC+CQ+AQ=1AP+CP+CF+FQ=1AP+1CF,∵CF是定值,当AP最小时,四边形APCQ的周长最小,∴当AP=AE时,四边形APCQ的周长最小,此时四边形APCQ的周长的最小值=1×1+2=2+2.【点睛】本题主要考查菱形的性质,关键在于第三问中的最小值的计算,要使周长最小,当AP=AE时,四边形APCQ的周长最小.21、(1)18;(1)图形见详解.【解析】

(1)利用网格特点和平移的性质画出点A、B、C的对应点A1、B1、C1即可;线段BC扫过的图形为平行四边形,从而利用平行四边形的面积公式计算即可;(1)延长AP到A1使A1P=AP,延长BP到B1使B1P=BP,延长CP到C1使C1P=CP,从而得到△A1B1C1.【详解】解:(1)如图,△A1B1C1为所作,线段BC扫过的面积=7×4=18;(1)如图,△A1B1C1为所作.【点睛】本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.22、(1)16;(2)详见解析;(3)52%【解析】

(1)直接总数减去其他组的人数,即可得到a(2)直接补充图形即可(3)先算出不低于40分的人数,然后除以总人数即可【详解】(1)a=50-4-6-14-10=16(2)如图所示.(3)本次测试的优秀率是=52%答:本次测试的优秀率是52%【点睛】本题主要考查频数分布直方图,比较简单,基础知识扎实是解题关键23、(1)见解析;(2)见解析;(3)四边形FGMN是矩形,见解析【解析】

(1)由“SAS”可证△ABF≌△DCE,可得∠ABF=∠DCE,可得结论;(2)通过证明四边形FGMN是平行四边形,可得MG=NF;(3)过点N作NH⊥MC于点H,由等腰三角形的性质可证∠BMG=∠MNH,可证∠GMN=90°,即可得四边形FGMN是矩形.【详解】证明:(1)∵四边形ABCD是矩形∴AB=CD,∠A=∠D=90°,且AF=DE∴△ABF≌△DCE(SAS)∴∠ABF=∠DCE,且∠ABC=∠DCB=90°∴∠FBC=∠ECB(2)∵FG=MN=CN∴∠NMC=∠NCM∴∠NMC=∠FBC∴MN∥BF,且FG=MN∴四边形FGMN是平行四边形∴MG=NF(3)四边形FGMN是矩形理由如下:如图,过点N作NH⊥MC于点H,∵MN=NC,NH⊥MC∴∠MNH=∠CNH=∠MNC,NH⊥MC∴∠MNH+∠NMH=90°∵∠MNC=2∠BMG,∠MNH=∠CNH=∠MNC∴∠BMG=∠MNH,∴∠BMG+∠NMH=90°∴∠GMN=90°∴四边形FGMN是矩形【点睛】本题考查了矩形的性质和判定,全等三角形的判定和性质,平行四边形的判定,证明∠BMG=∠MNH是本题的关键.24、(1)证明见解析;(2)【解析】

(1)根据平行四边形的判定得出四边形OCED是平行四边形,根据矩形的性质求出OC=OD,根据菱形的判定得出即可.(2)解直角三角形求出BC=3,AB=DC=,连接OE,交CD于点F,根据菱形的性质得出F为CD中点,求出OF=BC=,求出OE=2OF=3,求出菱形的面积即可.【详解】解:(1)∵,∴四边形OCED是平行四边形,∵四边形ABCD是矩形,∴AC=BD,OC=AC,OD=BD,∴OC=OD,∴四边形OCED是菱形;(2)在矩形ABCD中,∠ABC=90°,∠BAC=30°,AC=6,∴BC=AC=3,∴AB=DC=,连接OE,交CD于点F,∵四边形ABCD为菱形,∴F为CD中点,∵O为BD中点,∴OF=BC=,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论