版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省蚌埠局属2024年八年级下册数学期末综合测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.一个多边形的每个内角均为108°,则这个多边形是()边形.A.4 B.5 C.6 D.72.如图,Rt△ABC中,∠ACB=90°,若AB=15,则正方形ADEC和正方形BCFG的面积之和为()A.150 B.200 C.225 D.无法计算3.如图,在平面直角坐标系中,直线y=-3x+3与坐标轴分别交于A,B两点,以线段AB为边,在第一象限内作正方形ABCD,直线y=3x-2与y轴交于点F,与线段AB交于点E,将正方形ABCD沿x轴负半轴方向平移a个单位长度,使点D落在直线EF上.有下列结论:①△ABO的面积为3;②点C的坐标是(4,1);③点E到x轴距离是;④a=1.其中正确结论的个数是()A.4个 B.3个 C.2个 D.1个4.如图,在平行四边形ABCD中,,的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,,垂足为G,若,则AE的边长为A. B. C.4 D.85.利用“分形”与“迭代”可以制作出很多精美的图形,以下是制作出的几个简单图形,其中是轴对称但不是中心对称的图形是()A. B. C. D.6.若关于x的分式方程的解为x=2,则m的值为().A.2 B.0 C.6 D.47.下列式子中,属于最简二次根式的是:A. B. C. D.8.下列化简正确的是()A.12=22 B.-59.如图,△ABC中AB=AC,点D在AC边上,且BD=BC=AD,则∠A度数为()A.30° B.36° C.45° D.70°10.如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为()A.(,) B.(,) C.(,) D.(,4)11.下列函数中,是的正比例函数的是()A. B. C. D.12.如图,一次函数,的图象与的图象相交于点,则方程组的解是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在平面直角坐标系xOy中,平行四边形ABCD的四个顶点A,B,C,D是整点(横、纵坐标都是整数),则平行四边形ABCD的面积是_____14.“端午节”前,商场为促销定价为10元每袋的蜜枣粽子,采取如下方式优惠销售:若一次性购买不超过2袋,则按原价销售;若一次性购买2袋以上,则超过部分按原价的七折付款.张阿姨现有50元钱,那么她最多能买蜜枣粽子_____袋.15.如图,在一只不透明的袋子中装有6个球,其中红球3个、白球2个、黄球1个,这些球除颜色外都相同,将球搅匀,从袋子中任意摸出一个球,摸到_____球可能性最大.16.一支蜡烛长10cm,点燃时每分钟燃烧0.2cm,则点燃后蜡烛长度(cm)随点燃时间(min)而变化的函数关系式为_____________________,自变量的取值范围是________________.17.已知一次函数y=x+b的图象经过第一、二、三象限,写出一个符合条件的b的值为_____.18.在一次数学活动课上,老师让同学们借助一副三角板画平行线AB,下面是小楠、小曼两位同学的作法:老师说:“小楠、小曼的作法都正确”请回答:小楠的作图依据是______;小曼的作图依据是______.三、解答题(共78分)19.(8分)如图,△ABC三个顶点的坐标分别是A1,1(1)请画出△ABC向左平移5个单位长度后得到的△A(2)请画出△ABC关于原点对称的△A(3)在x轴上求点P的坐标,使PA+PB的值最小.20.(8分)已知一次函数的图象经过点A,B两点.(1)求这个一次函数的解析式;(2)求一次函数的图像与两坐标轴所围成的三角形的面积.21.(8分)下图是某汽车行驶的路程与时间(分钟)的函数关系图.观察图中所提供的信息,解答下列问题:(1)汽车在前分钟内的平均速度是.(2)汽车在中途停了多长时间?(3)当时,求与的函数关系式22.(10分)如图,矩形中,、的平分线、分别交边、于点、。求证;四边形是平行四边形。23.(10分)解不等式组并将解集在数轴上表示出来.24.(10分)阅读下面的情景对话,然后解答问题:老师:我们新定义一种三角形,两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.小明:那直角三角形是否存在奇异三角形呢?小红:等边三角形一定是奇异三角形.(1)根据“奇异三角形”的定义,小红得出命题:“等边三角形一定是奇异三角形”,则小红提出的命题是.(填“真命题”或“假命题”)(2)若是奇异三角形,其中两边的长分别为、,则第三边的长为.(3)如图,中,,以为斜边作等腰直角三角形,点是上方的一点,且满足.求证:是奇异三角形.25.(12分)(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数;(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.26.如图,数学兴趣小组要测量旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),聪明的小红发现:先测出垂到地面的绳子长m,再将绳子拉直(如图2),测出绳子末端C到旗杆底部B的距离n,利用所学知识就能求出旗杆的长,若m=2,n=6,求旗杆AB的长.
参考答案一、选择题(每题4分,共48分)1、B【解析】
首先求得外角的度数,然后利用360除以外角的度数即可求解.【详解】外角的度数是:180-108=72°,
则这个多边形的边数是:360÷72=1.故选B.2、C【解析】
小正方形的面积为AC的平方,大正方形的面积为BC的平方,两正方形面积的和为AC2+BC2,对于Rt△ABC,由勾股定理得AB2=AC2+BC2,AB=15,故可以求出两正方形面积的和.【详解】正方形ADEC的面积为:
AC2
,
正方形BCFG的面积为:BC2
;
在Rt△ABC中,AB2
=
AC2+
BC2,AB=15,
则AC2
+
BC2
=
225cm2,故选:C.【点睛】此题考查勾股定理,熟记勾股定理的计算公式是解题的关键.3、B【解析】
①由直线解析式y=-3x+3求出AO=3,BO=1,即可求出△ABO的面积;②证明△BAO≌△CBN即可得到结论;③联立方程组,求出交点坐标即可得到结论;④如图作CN⊥OB于N,DM⊥OA于M,利用三角形全等,求出点D坐标即可解决问题.【详解】如图,作CN⊥OB于N,DM⊥OA于M,CN与DM交于点F,①∵直线y=-3x+3与x轴、y轴分别交于B、A两点,∴点A(0,3),点B(1,0),∴AO=3,BO=1,∴△ABO的面积=,故①错误;②∵四边形ABCD是正方形,∴AB=AD=DC=BC,∠ABC=90°,∵∠BAO+∠ABO=90°,∠ABO+∠CBN=90°,∴∠BAO=∠CBN,在△BAO和△CBN中,,∴△BAO≌△CBN,∴BN=AO=3,CN=BO=1,∴ON=BO+BN=1+3=4,∴点C的坐标是(4,1),故②正确;③联立方程组,解得,y=,即点E到x轴的距离是,故③正确;④由②得DF=AM=BO=1,CF=DM=AO=3,∴点F(4,4),D(3,4),∵将正方形ABCD沿x轴负方向平移a个单位长度,使点D恰好落在直线y=3x-2上,∴把y=4代入y=3x-2得,x=2,∴a=3-2=1,∴正方形沿x轴负方向平移a个单位长度后,点D恰好落在直线y=3x-2上时,a=1,故④正确.故选B.【点评】本题考查反比例函数与一次函数的交点、正方形的性质、全等三角形的判定和性质等知识,解题的关键是添加辅助线构造全等三角形,属于中考常考题型.4、B【解析】
由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.【详解】∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=2,在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,∵平行四边形ABCD,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=4.故选B.考点:1.平行四边形的性质;2.等腰三角形的判定与性质;3.勾股定理.5、A【解析】
根据:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.逐个按要求分析即可.【详解】选项A,是轴对称图形,不是中心对称图形,故可以选;选项B,是轴对称图形,也是中心对称图形,故不可以选;选项C,不是轴对称图形,是中心对称图形,故不可以选;选项D,是轴对称图形,也是中心对称图形,故不可以选.故选A【点睛】本题考核知识点:轴对称图形和中心对称图形.解题关键点:理解轴对称图形和中心对称图形定义.
错因分析容易题.失分的原因是:没有掌握轴对称图形和中心对称图形的定义.
6、C【解析】
根据分式方程的解为x=2,把x=2代入方程即可求出m的值.【详解】解:把x=2代入得,,解得m=6.故选C.点睛:本题考查了分式方程的解,熟练掌握方程解得定义是解答本题的关键.7、A【解析】
根据最简二次根式的定义对各选项进行判断.【详解】解:=3,=2,=而为最简二次根式.
故选:A.【点睛】本题考查最简二次根式:熟练掌握最简二次根式满足的条件(被开方数的因数是整数或字母,因式是整式;被开方数中不含有可化为平方数或平方式的因数或因式).8、A【解析】
根据二次根式的性质以及合并同类二次根式法则,一一化简即可.【详解】A.正确12B.错误(-5)2C.错误.8D.错误.12=2故选A.【点睛】此题考查二次根式的加减法,二次根式的性质与化简,解题关键在于掌握运算法则.9、B【解析】
∵BD=BC=AD,AC=AB,∴∠A=∠ABD,∠C=∠ABC=∠CDB,设∠A=x°,则∠ABD=∠A=x°,∴∠C=∠ABC=∠CDB=∠A+∠ABD=2x°,∵∠A+∠C+∠ABC=180°,∴x+2x+2x=180,∴x=36,∴∠A=36°.故选B.考点:1.等腰三角形的性质;2.三角形内角和定理.10、C【解析】
利用等面积法求O'的纵坐标,再利用勾股定理或三角函数求其横坐标.【详解】解:过O′作O′F⊥x轴于点F,过A作AE⊥x轴于点E,∵A的坐标为(1,),∴AE=,OE=1.由等腰三角形底边上的三线合一得OB=1OE=4,在Rt△ABE中,由勾股定理可求AB=3,则A′B=3,由旋转前后三角形面积相等得,即,∴O′F=.在Rt△O′FB中,由勾股定理可求BF=,∴OF=.∴O′的坐标为().故选C.【点睛】本题考查坐标与图形的旋转变化;勾股定理;等腰三角形的性质;三角形面积公式.11、A【解析】
根据正比例函数的定义:一般地,形如是常数,的函数叫做正比例函数,其中叫做比例系数可选出答案.【详解】解:、是的正比例函数,故此选项正确;、是一次函数,故此选项错误;、是反比例函数,故此选项错误;、是一次函数,故此选项错误;故选:.【点睛】本题主要考查了正比例函数定义,关键是掌握正比例函数是形如是常数,的函数.12、A【解析】
根据图象求出交点P的坐标,根据点P的坐标即可得出答案.【详解】解:∵由图象可知:一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2的交点P的坐标是(-2,3),∴方程组的解是,故选A.【点睛】本题考查了对一次函数与二元一次方程组的关系的理解和运用,主要考查学生的观察图形的能力和理解能力,题目比较典型,但是一道比较容易出错的题目.二、填空题(每题4分,共24分)13、1【解析】
结合网格特点利用平行四边形的面积公式进行求解即可.【详解】由题意AD=5,平行四边形ABCD的AD边上的高为3,∴S平行四边形ABCD=5×3=1,故答案为:1.【点睛】本题考查了网格问题,平行四边形的面积,熟练掌握网格的结构特征以及平行四边形的面积公式是解题的关键.14、6【解析】
根据一次性购买不超过2袋,则按原价销售;若一次性购买2袋以上,则超据:2袋原价付款数+超过2袋的总钱数≤50,列出不等式求解即可得.【详解】解:设可以购买x(x为整数)袋蜜枣粽子.,解得:,则她最多能买蜜枣粽子是6袋.故答案为:6.【点睛】此题考查了一元一次不等式的应用,关键是读懂题意,找出题目中的数量关系,列出不等式,注意x只能为整数.15、红.【解析】
根据概率公式先求出红球、白球和黄球的概率,再进行比较即可得出答案.【详解】∵不透明的袋子中装有6个球,其中红球3个、白球2个、黄球1个,∴从袋子中任意摸出一个球,摸到红球的概率是:=,摸到白球的概率是=,摸到黄球的概率是,∴摸到红球的概率性最大;故答案为:红.【点睛】此题考查了利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率是解题关键.16、y=10-0.2x0≤x≤50【解析】
根据点燃后蜡烛的长度=蜡烛原长-燃烧掉的长度可列出函数关系式;根据0≤y≤10可求出自变量的取值范围.【详解】解:由题意得:y=10-0.2x,∵0≤y≤10,∴0≤10-0.2x≤10,解得:0≤x≤50,∴自变量x的取值范围是:0≤x≤50,故答案为:y=10-0.2x;0≤x≤50.【点睛】本题考查了由实际问题抽象出一次函数,正确得出变量之间的关系是解题的关键.17、2【解析】
图象经过一、三象限,还过第二象限,所以直线与y轴的交点在正半轴上,则b>2.【详解】解:∵图象经过第一、二、三象限,∴直线与y轴的交点在正半轴上,则b>2.∴符合条件的b的值大于2即可.∴b=2,故答案为2.【点睛】考查了一次函数图象与系数的关系,一次函数的图象经过第几象限,取决于x的系数及常数是大于2或是小于2.18、同位角相等,两直线平行或垂直于同一直线的两条直线平行内错角相等,两直线平行【解析】
由平行线的判定方法即可得到小楠、小曼的作图依据.【详解】解:∵∠B=∠D=90°,∴AB//CD(同位角相等,两直线平行);∵∠ABC=∠DCB=90°,∴AB//CD(内错角相等,两直线平行),故答案为:同位角相等,两直线平行(或垂直于同一直线的两条直线平行);内错角相等,两直线平行.【点睛】本题考查了作图-复杂作图和平行线的判定方法,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.三、解答题(共78分)19、(1)见解析;(2)见解析;(3)P点坐标为:2,0.【解析】
(1)分别作出三顶点向左平移5个单位长度后得到的对应点,再顺次连接即可得;(2)分别作出三顶点关于原点O成中心对称的对应点,再顺次连接即可得;(3)作点A关于x轴的对称点A′,连接A′B,与x轴的交点即为所求.【详解】解:(1)如图所示:△A(2)如图所示:△A(3)如图所示:作点A关于x轴的对称点A′,连接A′B,此时PA+PB的值最小,P点坐标为:2,0.【点睛】本题考查了利用平移变换和旋转变换作图、轴对称-最短路线问题;熟练掌握网格结构准确找出对应点的位置是解题的关键.20、(1);(2)4.【解析】
(1)先利用待定系数法确定一次函数的解析式是y=2x-4;(2)先确定直线y=2x-4与两坐标轴的交点坐标,然后根据三角形面积公式求解.【详解】解:(1)设这个一次函数的解析式为:y=kx+b(k≠0).将点A代入上式得:解得∴这个一次函数的解析式为:(2)∵∴当y=0时,2x-4=0,则x=2∴图象与x轴交于点C(2,0)∴【点睛】此题考查一次函数图象上点的坐标特征,待定系数法求一次函数解析式,解题关键在于把已知点代入解析式21、(1);(2)7分钟;(3).【解析】
(1)根据函数图象中的数据可以求得汽车在前9分钟内的平均速度;(2)根据函数图象中的数据可以求得汽车在中途停了多长时间;(3)根据函数图象中的数据可以求得当16≤t≤30时,S与t的函数关系式.【详解】解:(1)由图可得,汽车在前9分钟内的平均速度是:12÷9=km/min;(2)由图可得,汽车在中途停了:16-9=7min,即汽车在中途停了7min;(3)设当16≤t≤30时,S与t的函数关系式是S=at+b,把(16,12)和(30,40)代入得,解得,即当16≤t≤30时,S与t的函数关系式是S=2t-1.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.22、见解析【解析】
由矩形的性质可得AB∥CD,BC∥AD,由平行线的性质和角平分线的性质可得∠EBD=∠FDB,可证BE∥DF,且BC∥DE,可得四边形BEDF是平行四边形.【详解】解:∵四边形ABCD是矩形,∴AB∥CD,BC∥AD,∴∠ABD=∠BDC,∵BE平分∠ABD,DF平分∠BDC,∴∠EBD=∠ABD,∠FDB=∠BDC,∴∠EBD=∠FDB,∴BE∥DF,且BC∥DE,∴四边形BEDF是平行四边形.【点睛】本题考查了矩形的性质,平行四边形的判定,角平分线的性质,熟练运用矩形的性质是本题的关键.23、1<x≤1.【解析】
分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.【详解】,由①得,x≤1,由②得,x>1,故不等式组的解集为:1<x≤1.在数轴上表示为:.24、(1)真命题;(2);(3)见解析【解析】分析:(1)根据题中所给的奇异三角形的定义直接进行判断即可;(2)分第三条边是斜边或直角边两种情况,再根据勾股定理求出第三条边长;(3)由勾股定理得,AC2+CB2=AB2,由△ABD是等腰直角三角形得AB2=2AD2,结合已知条件可得结论.详解:(1)设等边三角形的边长为a,∵a2+a2=2a2,∴等边三角形一定是奇异三角形,∴“等边三角形一定是奇异三角形”,是真命题;(2)分两种情况:①当为斜边时,第三边长=,②当2和分别为直角边时,第三边长为<,故不存在,因此,第三边长为:;(3)∵△ACB是直角三角形,且∠ACB=90°,∴AC2+CB2=AB2,∵△ADB是等腰直角三角形,∴AB2=2AD2,∴AC2=AB2-CB2,∴AC2=2AD2-CB2,∵AE=AD,CE=CB,∴AC2+CB2=2AD2-CB2+CB2=2AD2=2CE2.∴是奇异三角形.点睛:本题考查了奇异三角形的定义、等边三角形的性质、勾股定理;熟练掌握等边三角形的性质和勾股定理,在解答(2)时要注意分类讨论.25、(1)①见解析;②60°;(1)见解析;(3)见解析.【解析】
(1)①由△DOE≌△BOF,推出EO=OF,由OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可;②先证明∠ABD=1∠ADB,推出∠ADB=30°,即可解决问题;(1)延长BE到M,使得EM=EJ,连接MJ,由菱形性质,∠B=600,得EB=BFBE=IM=BF,由∠MEJ=∠B=600,可证得ΔMEJ是等边三角形,可得MJ在RtΔIHF中,由∠IHF=900,∠IFH=60(3)结论:EG1=AG1+CE1.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可解决问题.【详解】(1)①证明:如图1中,∵四边形ABCD是矩形,∴AD//∴∠EDO=在ΔDOE和ΔBOF中,∠EDO
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届江苏省丹阳市高三生物第一学期期末教学质量检测试题含解析
- 2025届山东省高密市高三数学第一学期期末统考试题含解析
- 2025届南宁市第四十七中学高一数学第一学期期末预测试题含解析
- 2025届贵州毕节市威宁县第八中学高一数学第一学期期末教学质量检测试题含解析
- 2025届上海市宝山区上海大学附中英语高三上期末调研模拟试题含解析
- 2025届湖北省荆门市胡集高中高三英语第一学期期末检测试题含解析
- 2025届重庆市主城区七校生物高一上期末考试模拟试题含解析
- 2025届合肥市第六中学数学高三第一学期期末综合测试试题含解析
- 2025届浙江诸暨中学语文高三上期末调研模拟试题含解析
- 2025届辽宁省丹东市通远堡高中英语高三上期末复习检测模拟试题含解析
- 安吉游戏培训课件(全)
- 班会课之习惯养成(27张PPT)
- 施工电梯安装(拆卸)安全技术交底
- ABAP新手资料-SAP Script 编程指南-DOC
- 北京应急指挥系统建设
- 译林版五年级上册Project1-An-animal-school-第2课时课件
- 部编版一年级语文上册第1课《秋天》精品课件【最新】
- 螺栓剪切强度计算
- 三国演义-刘备 讲解课件
- 2022年安全生产事故档案(范本)
- 新疆克拉玛依市白碱滩区2019-2020学年六年级上学期期中考试语文试题(Word版无答案)
评论
0/150
提交评论