




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省南京市鼓楼区2024年八年级下册数学期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.若分式□的运算结果为x(x≠0),则在“口”中添加的运算符号为()A.+ B.﹣ C.+或÷ D.﹣或×2.化简(-1)2-(-3)0+得()A.0 B.-2 C.1 D.23.如图所示,四边形OABC是正方形,边长为6,点A、C分别在x轴、y轴的正半轴上,点D在OA上,且D点的坐标为(2,0),P是OB上一动点,则PA+PD的最小值为()A.2 B. C.4 D.64.某班第一组12名同学在“爱心捐款”活动中,捐款情况统计如下表,则捐款数组成的一组数据中,中位数与众数分别是()捐款(元)
10
15
20
50
人数
1
5
4
2
A.15,15 B.17.5,15 C.20,20 D.15,205.已知点A的坐标为(3,﹣6),则点A所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.要得到函数y=﹣6x+5的图象,只需将函数y=﹣6x的图象()A.向左平移5个单位B.向右平移5个单位C.向上平移5个单位D.向下平移5个单位7.若=,则x的取值范围是()A.x<3 B.x≤3 C.0≤x<3 D.x≥08.《九章算术》是中国古代的数学专著,是“算经十书”(汉唐之间出现的十部古算书)中最重要的一种.书中有下列问題:“今有邑方不知大小,各中开门,出北门八十步有木,出西门二百四十五步见木,问邑方有几何?”意思是:如图,点M、点N分别是正方形ABCD的边AD、AB的中点,ME⊥AD,NF⊥AB,EF过点A,ME=80步,NF=245步,则正方形的边长为()A.280步 B.140步 C.300步 D.150步9.如图,正方形ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B、D恰好都落在点G处,已知BE=1,则EF的长为(
)A. B. C. D.310.如图,矩形被对角线、分成四个小三角形,这四个小三角形的周长之和是,.则矩形的周长是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在平行四边形ABCD中,AC与BD相交于点O,∠AOB=60°,BD=4,将△ABC沿直线AC翻折后,点B落在点E处,那么S△AED=______12.若一组数据4,a,7,8,3的平均数是5,则这组数据的中位数是________.13.菱形的两条对角线分别为18cm与24cm,则此菱形的周长为_____.14.一组数据2,x,4,6,7,已知这组数据的众数是6,那么这组数据的方差是________.15.如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,则BC的长是___.16.一次函数的图象与轴的交点坐标是________.17.若代数式有意义,则x的取值范围是______。18.已知点,点,若线段AB的中点恰好在x轴上,则m的值为_________.三、解答题(共66分)19.(10分)如图,已知AD∥BC,AB⊥BC,AB=BC=4,P为线段AB上一动点.将△BPC沿PC翻折至△EPC,延长CE交射线AD于点D(1)如图1,当P为AB的中点时,求出AD的长(2)如图2,延长PE交AD于点F,连接CF,求证:∠PCF=45°(3)如图3,∠MON=45°,在∠MON内部有一点Q,且OQ=8,过点Q作OQ的垂线GH分别交OM、ON于G、H两点.设QG=x,QH=y,直接写出y关于x的函数解析式20.(6分)已知E、F分别是平行四边形ABCD的BC和DA边上的点,且CE=AF,问:DE与FB是否平行?说明理由.21.(6分)在菱形ABCD中,∠ABC=60°,E是对角线AC上任意一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF.(1)如图1,当E是线段AC的中点时,求证:BE=EF.(2)如图2,当点E不是线段AC的中点,其它条件不变时,请你判断(1)中的结论是否成立?若成立,请证明;若不成立,说明理由.22.(8分)某养猪场要出售200只生猪,现在市场上生猪的价格为11元/,为了估计这200只生猪能卖多少钱,该养猪场从中随机抽取5只,每只猪的重量(单位:)如下:76,71,72,86,1.(1)计算这5只生猪的平均重量;(2)估计这200只生猪能卖多少钱?23.(8分)已知:正方形ABCD和等腰直角三角形AEF,AE=AF(AE<AD),连接DE、BF,P是DE的中点,连接AP。将△AEF绕点A逆时针旋转。(1)如图①,当△AEF的顶点E、F恰好分别落在边AB、AD时,则线段AP与线段BF的位置关系为,数量关系为。(2)当△AEF绕点A逆时针旋转到如图②所示位置时,证明:第(1)问中的结论仍然成立。(3)若AB=3,AE=1,则线段AP的取值范围为。24.(8分)如图,点A在的边ON上,于点B,,于点E,,于点C.求证:四边形ABCD是矩形.25.(10分)某中学积极开展跳绳锻炼,一次体育測试后,体育委员统计了全班同学单位时间的跳绳次数,列出了频数分布表和頻数分布直方图,如图:次数频数4181381(1)补全频数分布表和频数分布直方图;(2)表中组距是次,组数是组;(3)跳绳次数在范围的学生有人,全班共有人;(4)若规定跳绳次数不低于140次为优秀,求全班同学跳绳的优秀率是多少?26.(10分)为推动阳光体育活动的广泛开展,引导学生积极参加体育锻炼,学校准备购买一批运动鞋供学生借用.现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据图中提供的信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为人,图①中的m的值为,图①中“38号”所在的扇形的圆心角度数为;(2)本次调查获取的样本数据的众数是,中位数是;(3)根据样本数据,若学校计划购买200双运动鞋,建议购买36号运动鞋多少双?
参考答案一、选择题(每小题3分,共30分)1、C【解析】
分别尝试各种符号,可得出结论.【详解】解:因为,,所以,在“口”中添加的运算符号为+或÷故选:C.【点睛】本题考核知识点:分式的运算,解题关键点:熟记分式运算法则.2、D【解析】
先利用乘方的意义、零指数幂的性质以及二次根式的性质分别化简,然后再进一步计算得出答案.【详解】原式=1-1+1=1.故选:D.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.3、A【解析】试题解析:连接CD,交OB于P.则CD就是PD+PA和的最小值.
∵在直角△OCD中,∠COD=90°,OD=2,OC=6,
∴CD=,
∴PD+PA=PD+PC=CD=2.
∴PD+PA和的最小值是2.
故选A.4、B【解析】
根据中位数和众数的概念进行判断.【详解】共有数据12个,第6个数和第7个数分别是1,20,所以中位数是:(1+20)÷2=17.5;捐款金额的众数是1.故选B.【点睛】本题考查中位数和众数,将数据从小到大或从大到小排列后,最中间的一个数或两个数的平均数称为中位数,出现次数最多的是众数.5、D【解析】
在平面直角坐标系中要判定一个点所在的象限,通常只需要判断点的横坐标和纵坐标的符号是正还是负就可以确定它所在的象限了.点A的横坐标为正数,纵坐标为负数,所以点A在第四象限.【详解】横纵坐标同是正数在第一象限,横坐标负数纵坐标正数在第二象限,横纵坐标同是负数在第三象限,横坐标正数纵坐标负数在第四象限,点A的横坐标为正数,纵坐标为负数,所以点A在第四象限.【点睛】此题主要考查如何判断点所在的象限,熟练掌握每个象限内点的坐标的正负符号特征,即可轻松判断.6、C【解析】
平移后相当于x不变y增加了5个单位,由此可得出答案.【详解】解:由题意得x值不变y增加5个单位
应沿y轴向上平移5个单位.
故选C.【点睛】本题考查一次函数图象的几何变换,注意平移k值不变的性质.7、C【解析】试题解析:根据题意得:解得:故选C.8、A【解析】
根据题意,可知Rt△AEN∽Rt△FAN,从而可以得到对应边的比相等,从而可以求得正方形的边长.【详解】解:设正方形的边长为x步,∵点M、点N分别是正方形ABCD的边AD、AB的中点,∴AM=1∴AM=AN,由题意可得,∠ANF=∠EMA=90°,∠NAF+∠AFN=∠NAF+∠EAM=90°,∴∠AFN=∠EAM,∴Rt△AEM∽Rt△FAN,∴MEAN而据题意知AM=AN,∴AM解得:AM=140,∴AD=2AM=280步,故选:A.【点睛】本题考查相似三角形的应用、数学常识、正方形的性质,解答本题的关键是明确题意.利用相似三角形的性质和数形结合的思想解答.9、B【解析】【分析】由图形折叠可得BE=EG,DF=FG;再由正方形ABCD的边长为3,BE=1,可得EG=1,EC=3-1=2,CF=3-FG;最后由勾股定理可以求得答案.【详解】由图形折叠可得BE=EG,DF=FG,∵正方形ABCD的边长为3,BE=1,∴EG=1,EC=3-1=2,CF=3-FG,在直角三角形ECF中,∵EF2=EC2+CF2,∴(1+GF)2=22+(3-GF)2,解得GF=,∴EF=1+=.故正确选项为B.【点睛】此题考核知识点是:正方形性质;轴对称性质;勾股定理.解题的关键在于:从图形折叠过程找出对应线段,利用勾股定理列出方程.10、C【解析】
四个小三角形的周长是两条对角线长与矩形周长的和,由此可求矩形周长.【详解】∵四边形ABCD是矩形,∴AC=BD.四个小三角形的周长=4AC+AD+DC+BC+BA,即40+矩形周长=68,所以矩形周长为1.故选:C.【点睛】本题主要考查了矩形的性质,矩形的对角线相等是解题的关键.二、填空题(每小题3分,共24分)11、3【解析】
根据题意画出翻折后的图形,连接OE、DE,先证明△OED是等边三角形,再利用同底等高的三角形面积相等,说明S△AED=S△OED,作OF⊥ED于F,求出△OED的面积即可得出结果.【详解】解:如图,△AEC是△ABC沿AC翻折后的图形,连接OE、DE,∵四边形ABCD是平行四边形,∴OB=OD=12∵△AEC是△ABC沿AC翻折后的图形,∠AOB=60º,∴∠AOE=60º,OE=OB,∴∠EOD=60º,OE=OD,∴△OED是等边三角形,∴∠DEO=∠AOE=60º,ED=OD=2,∴ED∥AC,∴S△AED=S△OED,作OF⊥ED于F,DF=12∴OF=OD2-DF∴S△OED=12ED·DF=∴S△AED=3.故答案为:3.【点睛】本题考查了图形的变换,平行四边形的性质,等边三角形的判定与性质,找到S△AED=S△OED是解题的关键.12、1【解析】
先根据平均数的定义求出x的值,然后根据中位数的定义求解.【详解】由题意可知,(1+a+7+8+3)÷5=5,a=3,这组数据从小到大排列3,3,1,7,8,所以,中位数是1.故答案是:1.【点睛】考查平均数与中位数的意义.平均数是指在一组数据中所有数据之和再除以数据的个数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.13、60cm【解析】
试题分析:根据菱形的性质对角线互相垂直平分,利用勾股定理求出菱形的边长即可解决问题.【详解】解:如图,四边形ABCD是菱形,AC=24,BD=18,∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=12,OD=OB=9,AB=BC=CD=AD,∴AD==1.∴菱形的周长为=60cm.故答案为60cm【点评】本题考查菱形的性质、勾股定理等知识,解题的关键是熟练掌握菱形的性质,属于中考常考题型.14、3.1【解析】
根据众数的定义先求出x的值,然后再根据方差的公式进行计算即可得.【详解】解:已知一组数据1,x,4,6,7的众数是6,说明x=6,则平均数=(1+6+4+6+7)÷5=15÷5=5,则这组数据的方差==3.1,故答案为3.1.【点睛】本题考查了众数、方差等,熟练掌握众数的定义、方差的计算公式是解题的关键.15、7【解析】
根据线段中点的定义可得CG=DG,然后利用“角边角”证明△DEG和△CFG全等,根据全等三角形对应边相等可得DE=CF,EG=FG,设DE=x,表示出BF,再利用勾股定理列式求EG,然后表示出EF,再根据线段垂直平分线上的点到两端点的距离相等可得BF=EF,然后列出方程求出x的值,从而求出AD,再根据矩形的对边相等可得BC=AD.【详解】∵矩形ABCD中,G是CD的中点,AB=8,∴CG=DG=×8=4,在△DEG和△CFG中,,∴△DEG≌△CFG(ASA),∴DE=CF,EG=FG,设DE=x,则BF=BC+CF=AD+CF=4+x+x=4+2x,在Rt△DEG中,EG=,∴EF=,∵FH垂直平分BE,∴BF=EF,∴4+2x=,解得x=3,∴AD=AE+DE=4+3=7,∴BC=AD=7.故答案为:7.【点睛】此题考查线段垂直平分线的性质、勾股定理、全等三角形的判定与性质,解题关键在于综合运用勾股定理、全等三角形的性质解答即可.16、(0,-3).【解析】
令x=0,求出y的值即可得出结论.【详解】解:当x=0时,y=-3∴一次函数的图象与y轴的交点坐标是(0,-3).故答案为:(0,-3).【点睛】本题考查的是一次函数图形上点的特征,熟知一次函数图象与坐标轴交点的算法是解答此题的关键.17、x>5【解析】
若代数式有意义,则分母即≠0,可得出x≠5.根据根式的性质能够得出x-5≥0,结合前面x≠5,即可得出x的取值范围.【详解】若代数式有意义,则≠0,得出x≠5.根据根式的性质知中被开方数x-5≥0则x≥5,由于x≠5,则可得出x>5,答案为x>5.【点睛】本题主要考查分式及根式有意义的条件,易错点在于学生容易漏掉其中之一.18、2【解析】
因为点A,B的横坐标相同,线段AB的中点恰好在x轴上,故点A,B关于x轴对称,纵坐标互为相反数,由此可得m的值.【详解】解:点A,B的横坐标相同,线段AB的中点恰好在x轴上点A,B关于x轴对称,纵坐标互为相反数点A的纵坐标为-2故答案为:2【点睛】本题考查了平面直角坐标系中点的对称问题,正确理解题意是解题的关键.三、解答题(共66分)19、(1)1;(2)见解析;(3)【解析】
(1)如图1.根据平行线的性质得到∠A=∠B=90°,由折叠的性质得到∠CEP=∠B=90°,PB=PE,∠BPC=∠EPC,根据全等三角形的性质得到∠APD=∠EPD,推出于是得到结论;(2)如图2.过C作CG⊥AF交AF的延长线于G,推出四边形ABCG是矩形,得到矩形ABCG是正方形,求得CG=CB,根据折叠的性质得到∠CEP=∠B=90°,BC=CE,∠BCP=∠ECP,根据全等三角形的性质即可得到结论:(3)如图3,将△OQG沿OM翻折至△OPG,将△OQH沿ON翻折至△ORH,延长PG,RH交于S,推出四边形PORS是正方形,根据勾股定理即可得到结论.【详解】解:(1)如图1,连结,∵AD//BC.AB⊥BC,∴∠A=∠B=90°∵将△BPC沿PC翻折至△EPC,∴∠CEP=∠B=90°,PB=PE,∠BPC=∠EPC,∴∠DEP=90°∵当P为AB的中点,∴AP=BP∴PA=PE∵PD=PD∴,∴作于,设,则,由勾股定理得,解得,∴图1(2)如图2,作交延长线于,易证四边形为正方形∵∠A=∠B=∠G=90°,∴四边形ABCG是矩形,∵AB=BC,∴矩形ABCG是正方形,∴CG=CB.∵将△BPC沿PC翻折至△EPC,∴∠FED=90°,CG=CE,又∵CF=CF∴,∴∠ECF=∠GCF,∴∠BCP+∠GCF=∠PCE+∠FCE=45°∴∠PCF=45°;图2(3)如图3.将△OQG沿OM翻折至OOPG.将△OQH沿ON翻折至△ORH.延长PG,RH交于S,则∠POG=∠QOG.∠ROH=∠QOH,OP=OQ=OR=8,PG=QG=x,QH=RH=y,∴∠POR=2∠MON=90",∵GH⊥OQ.∴∠OQG=∠OQH=90°.∴∠P=∠R=90°,∴四边形PORS是正方形。∴PS=RS=8,∠S=90°,∴.GS=8-x,HS=8-y.∴.∴∴图3【点睛】本题考查了折叠的性质,全等三角形的判定和性质,正方形的判定和性质,正确的作出辅助线是解题的关键.20、DE∥FB【解析】试题分析:DE与FB平行,根据已知条件可证明DFBE是平行四边形,由平行四边形的性质可得DE∥FB.试题解析:DE∥FB.因为在□ABCD中,AD∥BC(平行四边形的对边互相平行).且AD=BC(平行四边形的对边相等),所以DF∥BE,又CE=AF,DE=AD﹣AF,BE=BC﹣CE,所以DF=BE,所以DFBE是平行四边形,(有一组对边平行且相等的四边形是平行四边形),所以DE∥FB.(平行四边形的对边相等).21、(1)详见解析;(2)结论成立,理由详见解析.【解析】
(1)由四边形ABCD是菱形,∠ABC=60°,可知△ABC是等边三角形,因为E是线段AC的中点,所以∠CBE=∠ABE=30°,AE=CE,由AE=CF得CE=CF可知∠CEF=∠F由∠ACF=120°可知∠F=30°∴∠F=∠CBE=30°。即可证明BE=EF.(2)过点E作EG∥BC交AB于点G,可得∠AGE=∠ABC=60°,因为∠BAC=60°,所以△AGE是等边三角形,可知AG=AE=GE,∠AGE=60°,可知BG=CE,因为CF=AE,所以GE=CF,进而可证明△BGE≌△ECF,即可证明BE=EF.【详解】(1)∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴∠BCA=60°,∵E是线段AC的中点,∴∠CBE=∠ABE=30°,AE=CE,∵CF=AE,∴CE=CF,∵∠ECF=120°,∴∠F=∠CEF=30°∴∠CBE=∠F=30°,∴BE=EF;(2)结论成立;理由如下:过点E作EG∥BC交AB于点G,如图2所示:∵四边形ABCD为菱形,∴AB=BC,∠BCD=120°,AB∥CD,∴∠ACD=60°,∠DCF=∠ABC=60°,∴∠ECF=120°,又∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠ACB=60°,又∵EG∥BC,∴∠AGE=∠ABC=60°,又∵∠BAC=60°,∴△AGE是等边三角形,∴AG=AE=GE,∠AGE=60°,∴BG=CE,,又∵CF=AE,∴GE=CF,∵在△BGE和△CEF中,BG=CE,∠BGE=∠ECF,GE=CF,∴△BGE≌△ECF(SAS),∴BE=EF.【点睛】本题考查菱形的性质,等边三角形,全等三角形的性质,熟练掌握相关知识是解题关键.22、(1)78.4(千克);(2)172480(元).【解析】
(1)根据平均数的计算可得这5只生猪的平均重量;(2)根据用样本估计总体的思想可估计这200只生猪每只生猪的平均重量,由(1)中的平均数可得.【详解】解:(1)这5只生猪的平均重量为千克;(2)根据用样本估计总体的思想可估计这200只生猪每只生猪的平均重量约为千克;
根据题意,生猪的价格为11元,
故这200只生猪能卖元.【点睛】本题主要考查的是通过样本估计总体.统计的思想就是用样本的信息来估计总体的信息.23、(1)AP⊥BF,(2)见解析;(3)1≤AP≤2【解析】
(1)根据直角三角形斜边中线定理可得,即△APD为等腰三角形推出∠DAP=∠EDA,可证△AED≌△ABF可得∠ABF=∠EDA=∠DAP且BF=ED由三角形内角和可得∠AOF=90°即AP⊥BF由全等可得即(2)延长AP至Q点使得DQ∥AE,PA延长线交于G点,利用P是DE中点,构造△AEP≌△PDQ可得∠EAP=∠PQD,DQ=AE=FA可得∠QDA=∠FAB可证△FAB≌△QDA得到∠AFB=∠PQD=∠EAP,AQ=FB由三角形内角和可得∠FAG=90°得出AG⊥FB即AP⊥BF由全等可得(3)由于即求BF的取值范围,当BF最小时,即F在AB上,此时BF=2,AP=1当BF最大时,即F在BA延长线上,此时BF=4,AP=2可得1≤AP≤2【详解】(1)根据直角三角形斜边中线定理有AP是△AED中线可得,即△APD为等腰三角形。∴∠DAP=∠EDA又AE=AF,∠BAF=∠DAE=90°,AB=AD∴△AED≌△ABF∴∠ABF=∠EDA=∠DAP且BF=ED设AP与BF相交于点O∴∠ABF+∠AFB=90°=∠DAP+∠AFB∴∠AOF=90°即AP⊥BF∴即故答案为:AP⊥BF,(2)延长AP至Q点使得DQ∥AE,PA延长线交于G点∴∠EAP=∠PQD,∠AEP=∠QDP∵P是DE中点,∴EP=DP∴△AEP≌△PDQ则∠EAP=∠PQD,DQ=AE=FA∠QDA=180°-(∠PAD+∠PQD)=180°-∠EAD而∠FAB=180°-∠EAD,则∠QDA=∠FAB∵AF=DQ,∠QDA=∠FAB,AB=AD∴△FAB≌△QDA∴∠AFB=∠PQD=∠EAP,AQ=FB而∠EAP+∠FAG=90°∴∠AFB+∠FAG=90°∴∠FAG=90°∴AG⊥FB即AP⊥BF又∴(3)∵∴即求BF的取值范围BF最小时,即F在AB上,此时BF=2,AP=1BF最大时,即F在BA延长线上,此时BF=4,AP=2∴1≤AP≤2【点睛】掌握三角形全等以及直角三角形斜边上的中线,灵活运用各种角关系是解题的关键。24、详见解析【解析】
根据全等三角形的判定和性质以及矩形的判定解答即可;【详解】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 机械润滑工(油脂选型)岗位面试问题及答案
- 蔬菜采摘园与旅行社合作合同
- 股权投资基金股权收购及转让合同
- 股份赠与及股权分红合同范本
- 绿色能源项目股东投资合作协议
- 股权激励资金支付保障合同
- 临时工社会保险缴纳及福利待遇合同
- 房屋产权变更购房买卖合同书
- 电子产品物流购销运输合同规范范本
- 文化产业股权投资与品牌运营合同范本
- 《洗红领巾》(教案)-2024-2025学年二年级上册劳动苏科版
- 《从偶然到必然:华为研发投资与管理实践》第1,2章试题
- 2025年公安辅警招聘知识考试题(附含答案)
- 办公家具采购项目投标方案投标文件(技术方案)
- 电子商务数据分析实战题库
- 中医基础知识津液课件
- 义务教育物理课程标准
- 国家开放大学本科《商务英语4》一平台在线形考(单元自测1至8)试题及答案2025珍藏版
- 2025浙江绍兴市高速公路运营管理限公司高速公路人员招聘277人高频重点提升(共500题)附带答案详解
- 2025年中国不锈钢化学蚀刻剂市场调查研究报告
- 分级护理质量追踪与持续改进
评论
0/150
提交评论