广东省东莞市石碣丽江学校2024年八年级下册数学期末监测试题含解析_第1页
广东省东莞市石碣丽江学校2024年八年级下册数学期末监测试题含解析_第2页
广东省东莞市石碣丽江学校2024年八年级下册数学期末监测试题含解析_第3页
广东省东莞市石碣丽江学校2024年八年级下册数学期末监测试题含解析_第4页
广东省东莞市石碣丽江学校2024年八年级下册数学期末监测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省东莞市石碣丽江学校2024年八年级下册数学期末监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知一次函数,随的增大而减小,则的取值范围是()A. B. C. D.2.下表记录了甲、乙、丙、丁四名同学参加某区“中华魂”主题教育演讲比赛的相关数据:根据表中数据,要从中选择一名成绩好且发挥稳定的同学参加市级比赛,应该选择甲乙丙丁平均数分90809080方差A.甲 B.乙 C.丙 D.丁3.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为()A.个 B.个 C.个 D.个4.芝麻的用途广泛,经测算,一粒芝麻约有0.00000201千克.数据0.00000201用科学记数法表示为()A. B. C. D.5.下面哪个点不在函数y=-2x+3的图象上()A.(-5,13) B.(0.5,2) C.(1,2) D.(1,1)6.若点P(-2,a)在第二象限,则a的值可以是()A.1 B.-1 C.0 D.-27.不等式组的解集在数轴上表示为()A. B.C. D.8.如图,在平面直角坐标系中,直线y=-3x+3与坐标轴分别交于A,B两点,以线段AB为边,在第一象限内作正方形ABCD,直线y=3x-2与y轴交于点F,与线段AB交于点E,将正方形ABCD沿x轴负半轴方向平移a个单位长度,使点D落在直线EF上.有下列结论:①△ABO的面积为3;②点C的坐标是(4,1);③点E到x轴距离是;④a=1.其中正确结论的个数是()A.4个 B.3个 C.2个 D.1个9.将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图(3),则三角板的最大边的长为()A. B. C. D.10.如图,把两块全等的的直角三角板、重叠在一起,,中点为,斜边中点为,固定不动,然后把围绕下面哪个点旋转一定角度可以使得旋转后的三角形与原三角形正好合成一个矩形(三角板厚度不计)()A.顶点 B.顶点 C.中点 D.中点二、填空题(每小题3分,共24分)11.如图,在中,已知,,现将沿所在的直线向右平移4cm得到,于相交于点,若,则阴影部分的面积为______.12.已知一次函数y=x+4的图象经过点(m,6),则m=_____.13.已知一次函数y=kx+2的图象与x轴交点的横坐标为6,则当-3≤x≤3时,y的最大值是______.14.化简的结果是______15.如图,在矩形ABCD中,E、F、G、H分别是四条边的中点,HF=2,EG=4,则四边形EFGH的面积为____________.16.如图,在▱ABCD中,按以下步骤作图:①以C为圆心,以适当长为半径画弧,分别交BC,CD于M,N两点;②分别以M,N为圆心,以大于MN的长为半径画弧,两弧在∠BCD的内部交于点P;⑨连接CP并延长交AD于E.若AE=2,CE=6,∠B=60°,则ABCD的周长等于_____.17.如图所示,△ABC中,AB=10cm,AC=8cm,∠ABC和∠ACB的角平分线交于点O,过点O作BC的平行线MN交AB于点M,交AC于点N,则△AMN的周长为____.18.如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=1,则FM的长为.三、解答题(共66分)19.(10分)下岗职工王阿姨利用自己的﹣技之长开办了“爱心服装厂”,计划生产甲、乙两种型号的服装共40套投放到市场销售.已知甲型服装每套成本34元,售价39元;乙型服装每套成本42元,售价50元.服装厂预计两种服装的成本不低于1536元,不高于1552元.(1)问服装厂有哪几种生产方案?(2)按照(1)中方案生产,服装全部售出至少可获得利润多少元?(3)在(1)的条件下,服装厂又拿出6套服装捐赠给某社区低保户,其余34套全部售出,这样服装厂可获得利润27元.请直接写出服装厂这40套服装是按哪种方案生产的.20.(6分)在平面直角坐标系中,原点为O,已知一次函数的图象过点A(0,5),点B(﹣1,4)和点P(m,n)(1)求这个一次函数的解析式;(2)当n=2时,求直线AB,直线OP与x轴围成的图形的面积;(3)当△OAP的面积等于△OAB的面积的2倍时,求n的值21.(6分)如图所示,已知是的外角,有以下三个条件:①;②∥;③.(1)在以上三个条件中选两个作为已知,另一个作为结论写出一个正确命题,并加以证明.(2)若∥,作的平分线交射线于点,判断的形状,并说明理由22.(8分)如图,是等边三角形,是中线,延长至,.(1)求证:;(2)请在图中过点作交于,若,求的周长.23.(8分)同学们,我们以前学过完全平方公式,你一定熟悉掌握了吧!现在,我们又学习了二次根式,那么所有非负数都可以看作是一个数的平方,如,,下面我们观察:;反之,;∴;∴.仿上例,求:(1);(2)若,则、与、的关系是什么?并说明理由.24.(8分)2019年5月区教育局在全区中小学开展了“情系新疆书香援疆”捐书活动.某学校学生社团对部分学生所捐图书进行统计,根据收集的数据绘制了下面不完整的统计图表.请你根据统计图表中所提供的信息解答下列问题:(1)统计表中的_____________,_____________,_____________,_____________;(2)科普图书在扇形统计图中的圆心角是_____________°;(3)若该校共捐书1500本,请估算“科普图书”和“小说”一共多少本.25.(10分)如图,在△ABC中,BD平分∠ABC,∠A=2∠C.(1)若∠C=38°,则∠ABD=;(2)求证:BC=AB+AD;(3)求证:BC2=AB2+AB•AC.26.(10分)某校“六一”活动购买了一批A,B两种型号跳绳,其中A型号跳绳的单价比B型号跳绳的单价少9元,已知该校用2600元购买A型号跳绳的条数与用3500元购买B型号跳绳的条数相等.(1)求该校购买的A,B两种型号跳绳的单价各是多少元?(2)若两种跳绳共购买了200条,且购买的总费用不超过6300元,求A型号跳绳至少购买多少条?

参考答案一、选择题(每小题3分,共30分)1、B【解析】

根据一次函数的图像性质即可求解.【详解】依题意得k-2<0,解得故选B.【点睛】此题主要考查一次函数的性质,解题的关键是熟知k的性质.2、A【解析】

根据表格中的数据可知,甲、丙的平均成绩较好,再根据方差越小越稳定即可解答本题.【详解】由平均数可知,甲和丙成绩较好,

甲的方差小于丙的方差,故甲发挥稳定.故选A【点睛】本题考查方差、算术平均数,解答本题的关键是明确平均数和方差的意义.3、C【解析】

科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值时,n是正数;当原数的绝对值时,n是负数.【详解】120亿个用科学记数法可表示为:个.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,为整数,表示时关键要正确确定的值以及的值.4、C【解析】

根据科学记数法的概念:科学记数法是一种记数的方法。把一个数表示成a与10的n次幂相乘的形式(1≤|a|<10,n为整数),即可解题.【详解】解:根据科学记数法的记法,可得0.00000201=故答案为C.【点睛】此题主要考查科学记数法,熟练运用,即可解题.5、C【解析】

分别把A,B,C,D四个选项的点代入函数y=-2x+3中,由此进行判断,能求出结果.【详解】解:∵y=-2x+3,

∴当x=-5时,y=13,故(-5,13)在函数y=-2x+3的图象上;

当x=0.5时,y=2,故(0.5,2)在函数y=-2x+3的图象上;

当x=1时,y=12,故(1,2)不在函数y=-2x+3的图象上;

当x=1时,y=1,故(1,1)在函数y=-2x+3的图象上.

故选:C.【点睛】本题考查不满足一次函数的点的判断,是基础题,解题时要认真审题,注意函数性质的合理运用.6、A【解析】

根据第二象限内点的纵坐标是正数判断.【详解】∵点P(-2,a)在第二象限,∴a>0,∴1、0、-1、-2四个数中,a的值可以是1.故选A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7、C【解析】

先分别解不等式,得到不等式组的解集,再在数轴上表示解集.【详解】因为,不等式组的解集是:x≤-1,所以,不等式组的解集在数轴上表示为故选C【点睛】本题考核知识点:解不等式组.解题关键点:解不等式.8、B【解析】

①由直线解析式y=-3x+3求出AO=3,BO=1,即可求出△ABO的面积;②证明△BAO≌△CBN即可得到结论;③联立方程组,求出交点坐标即可得到结论;④如图作CN⊥OB于N,DM⊥OA于M,利用三角形全等,求出点D坐标即可解决问题.【详解】如图,作CN⊥OB于N,DM⊥OA于M,CN与DM交于点F,①∵直线y=-3x+3与x轴、y轴分别交于B、A两点,∴点A(0,3),点B(1,0),∴AO=3,BO=1,∴△ABO的面积=,故①错误;②∵四边形ABCD是正方形,∴AB=AD=DC=BC,∠ABC=90°,∵∠BAO+∠ABO=90°,∠ABO+∠CBN=90°,∴∠BAO=∠CBN,在△BAO和△CBN中,,∴△BAO≌△CBN,∴BN=AO=3,CN=BO=1,∴ON=BO+BN=1+3=4,∴点C的坐标是(4,1),故②正确;③联立方程组,解得,y=,即点E到x轴的距离是,故③正确;④由②得DF=AM=BO=1,CF=DM=AO=3,∴点F(4,4),D(3,4),∵将正方形ABCD沿x轴负方向平移a个单位长度,使点D恰好落在直线y=3x-2上,∴把y=4代入y=3x-2得,x=2,∴a=3-2=1,∴正方形沿x轴负方向平移a个单位长度后,点D恰好落在直线y=3x-2上时,a=1,故④正确.故选B.【点评】本题考查反比例函数与一次函数的交点、正方形的性质、全等三角形的判定和性质等知识,解题的关键是添加辅助线构造全等三角形,属于中考常考题型.9、D【解析】分析:过另一个顶点C作垂线CD如图,可得直角三角形,根据直角三角形中30°角所对的边等于斜边的一半,可求出有45°角的三角板的直角直角边,再由等腰直角三角形求出最大边.解答:解:过点C作CD⊥AD,∴CD=3,在直角三角形ADC中,∵∠CAD=30°,∴AC=2CD=2×3=6,又三角板是有45°角的三角板,∴AB=AC=6,∴BC2=AB2+AC2=62+62=72,∴BC=故选D.10、D【解析】

运用旋转的知识逐项排除,即可完成解答.【详解】A,绕顶点A旋转可以得到等腰三角形,故A错误;B,绕顶点B旋转得不到矩形,故B错误;C,绕中点P旋转可以得到等腰三角形,故C错误;D,绕中点Q旋转可以得到等腰三角形,故D正确;因此答案为D.【点睛】本题主要考查了旋转,解题的关键在于具有丰富的空间想象能力.二、填空题(每小题3分,共24分)11、1【解析】

根据平移的性质求出A′B,然后根据阴影部分的面积列式计算即可得解.【详解】解:∵AB=BC=9cm,平移距离为4cm,∴A′B=9−4=5cm,∵,∴,∵∠ABC=90°,∴阴影部分的面积=,故答案为:1.【点睛】本题考查了平移的性质,是基础题,熟记平移的性质是解题的关键.12、1【解析】试题分析:直接把点(m,6)代入一次函数y=x+4即可求解.解:∵一次函数y=x+4的图象经过点(m,6),∴把点(m,6)代入一次函数y=x+4得m+4=6解得:m=1.故答案为1.13、1≤y≤1【解析】

将点(6,0)代入解析式即可求出k的值,得到一次函数的增减性,然后结合自变量的取值范围得到函数值的取值范围即可.【详解】∵一次函数的图象与x轴交点的横坐标为,∴这个交点的坐标为(6,0),把(6,0)代入中得:,,∵<0,y随x的增大而减小,当时,=1.当时,.则.故答案是:.【点睛】本题考查了利用直线上点坐标确定解析式,熟练掌握直线上任意一点的坐标都满足函数关系式;对于一次函数求极值问题可通过增减性求,也可以代特殊值求出.14、﹣1【解析】分析:直接利用分式加减运算法则计算得出答案.详解:==.故答案为-1.点睛:此题主要考查了分式的加减运算,正确掌握运算法则是解题关键.15、4【解析】

根据题意可证明四边形EFGH为菱形,故可求出面积.【详解】∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠B=∠C=∠D=90°,∵E、F、G、H分别是四条边的中点,∴AE=DG=BE=CG,AH=DH=BF=CF,∴△AEH≌△DGH≌△BEF≌△CGF(SAS),∴EH=EF=FG=GH,∴四边形EFGH是菱形,∵HF=2,EG=4,∴四边形EFGH的面积为HF·EG=×2×4=4.【点睛】此题主要考查菱形的判定与面积求法,解题的关键是熟知特殊平行四边形的性质与判定定理.16、1【解析】

首先证明是等边三角形,求出,即可解决问题.【详解】解:由作图可知,四边形是平行四边形,,,,,是等边三角形,,,,四边形的周长为1,故答案为1.【点睛】本题考查作图复杂作图,平行四边形的性质,等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17、18【解析】

根据角平分线的定义、平行线的性质,及等角对等边可知OM=BM,ON=CN,则△AMN的周长=AB+AC可求.【详解】∵∠ABC和∠ACB的角平分线交于点O,∴∠ABO=∠CBO,∠ACO=∠BCO,∵BC∥MN,∴∠BOM=∠CBO,∠CON=∠BCO,∴∠BOM=∠ABO,∠CON=∠ACO,∴OM=BM,ON=CN,∴△AMN的周长=AM+AN+MN=AM+OM+AN+NC=AB+AC=18cm.故答案为:18.【点睛】此题考查角平分线的定义,平行线分线段成比例,解题关键在于得出OM=BM,ON=CN.18、2.5【解析】试题分析:∵△DAE逆时针旋转90°得到△DCM,∴∠FCM=∠FCD+∠DCM=180°,∴F、C、M三点共线,∴DE=DM,∠EDM=90°,∴∠EDF+∠FDM=90°,∵∠EDF=45°,∴∠FDM=∠EDF=45°,在△DEF和△DMF中,DE=DM∠EDF=∠FDM∵AE=CM=1,且BC=3,∴BM=BC+CM=3+1=4,∴BF=BM﹣MF=BM﹣EF=4﹣x,∵EB=AB﹣AE=3﹣1=2,在Rt△EBF中,由勾股定理得EB2+BF2=EF2,即22+(4﹣x)2=x2,解得:x=52,∴FM=5考点:1.旋转的性质;2.全等三角形的判定与性质;3.正方形的性质.三、解答题(共66分)19、(1)生产甲型服装16套,乙型24套或甲型服装17套,乙型23套或甲型服装1套,乙型服装22套;(2)至少可获得利润266元;(3)生产甲型服装16套,乙型服装24套【解析】试题分析:(1)根据题意设甲型服装x套,则乙型服装为(40-x)套,由已知条件列不等式1536≤34x+42(40-x)≤1552进行解答即求出所求结论;(2)根据每种型号的利润和数量都已说明,需求出总利润,根据一次函数的性质即可得到利润最小值;(3)设捐出甲型号m套,则有39(甲-m)+50[乙-(6-m)]-34甲-42乙=27,整理得5甲+8乙+11m=327,又(1)得,甲可以=16、17、1,而只有当甲=16套时,m=5为整数,即可得到服装厂采用的方案.试题解析:(1)解:设甲型服装x套,则乙型服装为(40﹣x)套,由题意得1536≤34x+42(40﹣x)≤1552,解得16≤x≤1,∵x是正整数,∴x=16或17或1.有以下生产三种方案:生产甲型服装16套,乙型24套或甲型服装17套,乙型23套或甲型服装1套,乙型服装22套;(2)解:设所获利润为y元,由题意有:y=(39﹣34)x+(50﹣42)(40﹣x)=﹣3x+320,∵y随x的增大而减小,∴x=1时,y最小值=266,∴至少可获得利润266元(3)解:服装厂采用的方案是:生产甲型服装16套,乙型服装24套.20、(1)y=x+5;(2)5;(1)7或1【解析】

(1)利用待定系数法求一次函数的解析式;(2)设直线AB交x轴于C,如图,则C(﹣5,0),然后根据三角形面积公式计算S△OPC即可;(1)利用三角形面积公式得到×5×|m|=2××1×5,解得m=2或m=﹣2,然后利用一次函数解析式计算出对应的纵坐标即可.【详解】解:(1)设这个一次函数的解析式是y=kx+b,把点A(0,5),点B(﹣1,4)的坐标代入得:,解得:k=1,b=5,所以这个一次函数的解析式是:y=x+5;(2)设直线AB交x轴于C,如图,当y=0时,x+5=0,解得x=﹣5,则C(﹣5,0),当n=2时,S△OPC=×5×2=5,即直线AB,直线OP与x轴围成的图形的面积为5;(1)∵当△OAP的面积等于△OAB的面积的2倍,∴×5×|m|=2××1×5,∴m=2或m=﹣2,即P点的横坐标为2或﹣2,当x=2时,y=x+5=7,此时P(2,7);当x=﹣2时,y=x+5=1,此时P(﹣2,1);综上所述,n的值为7或1.【点睛】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.21、(1)①③作为条件,②作为结论,见解析;(2)等腰三角形,见解析【解析】

(1)根据题意,结合平行线的性质,选择两个条件做题设,一个条件做结论,得到正确的命题;(2)作出图形,利用平行线的性质和角平分线的定义证明即可.【详解】(1)证明:∵,∴,,∵,∴,∴AC=BC(2)是等腰三角形,理由如下:如图:∵,∴∵BF平分,∴,∴,∴BC=FC,∴是等腰三角形【点睛】本题考查的是平行线的性质以及角平分线的性质,本题是一道探索性条件开放性题目,能有效地培养学生“执果索因”的思维方式与能力.22、(1)详见解析;(2)48.【解析】

根据等边三角形的性质得到,再根据外角定理与等腰三角形的性质得到,故,即可证明;(2)根据含30°的直角三角形得到C的长即可求解.【详解】(1)证明:是等边三角形,是中线,,又,.又,.,(等角对等边);(2)于,,是直角三角形,,,,是等边三角形,是中线,,是等边三角形的周长.【点睛】此题主要考查等边三角形的性质,解题的关键是熟知等腰三角形的判定与性质及含30°的直角三角形的性质.23、(1);(2),.理由见解析.【解析】

(1)根据阅读材料即可求解;(2)根据阅读材料两边同时平方即可求解.【详解】(1);(2),;∵,∴,∴,∴,.【点睛】此题主要考查二次根式的性质,解题的关键是熟知二次根式的运算法则.24、(1),,,;(2);(3)【解析】

(1)根据频率=频数÷总数分别求解可得;(2)圆心角=频数×360°可得;(3)用总人数乘以样本中科普图书和小说的频率之和可得;【详解】(1)先求出总数=500,a==0.35,b=500×0.3=150,c==0.22,d==0.13所以,,,;(2)360×0.3=(3)(本)【点睛】本题考查了列表法求概率,频数分布直方图,扇形统计图,正确的识图是解题的关键.25、(1)33°;(1)证明见解析.(3)证明见解析.【解析】试题分析:(1)在BC上截取BE=AB,利用“边角边”证明△ABD和△BED全等,根据全等三角形对应边相等可得DE=AD,全等三角形对应角相等可得∠AED=∠A,然后求出∠C=∠CDE,根据等角对等边可得CE=DE,然后结合图形整理即可得证;(1)由(1)知:△ABD≌△BED,根据全等三角形对应边相等可得DE=AD,全等三角形对应角相等可得∠AED=∠A,然后求出∠C=∠CDE,根据等角对等边可得CE=DE,等量代换得到EC=AD,即得答案BC=BE+EC=AB+AD;(3)为了把∠A=1∠C转化成两个角相等的条件,可以构造辅助线:在AC上取BF=BA,连接AE,根据线段的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论