版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年黑龙江省哈尔滨旭东中学数学八年级下册期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列说法中,错误的是()A.两组对边分别相等的四边形是平行四边形B.有一个角是直角的平行四边形是矩形C.有三条边相等的四边形是菱形D.对角线互相垂直的矩形是正方形2.下列命题中,正确的是()A.平行四边形的对角线相等B.矩形的对角线互相垂直C.菱形的对角线互相垂直且平分D.对角线相等的四边形是矩形3.为了研究特殊四边形,李老师制作了这样一个教具(如图1):用钉子将四根木条钉成一个平行四边形框架ABCD,并在A与C、B与D两点之间分别用一根橡皮筋拉直固定,课上,李老师右手拿住木条BC,用左手向右推动框架至AB⊥BC(如图2)观察所得到的四边形,下列判断正确的是()A.∠BCA=45° B.AC=BDC.BD的长度变小 D.AC⊥BD4.如图,在矩形中,,,点是边上一点,点是矩形内一点,,则的最小值是()A.3 B.4 C.5 D.5.如图,点A是反比例函数图像上一点,AC⊥x轴于点C,与反比例函数图像交于点B,AB=2BC,连接OA、OB,若△OAB的面积为2,则m+n的值()A.-3 B.-4 C.-6 D.-86.八(1)班班长统计2017年5~12月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制出如下折线统计图,下列说法不正确的是()A.众数是58 B.平均数是50C.中位数是58 D.每月阅读数量超过40本的有6个月7.下列命题错误的是()A.对角线互相垂直平分的四边形是菱形 B.平行四边形的对角线互相平分C.矩形的对角线相等 D.对角线相等的四边形是矩形8.已知正比例函数,且随的增大而减小,则的取值范围是()A. B. C. D.9.下列选项中,矩形具有的性质是()A.四边相等 B.对角线互相垂直 C.对角线相等 D.每条对角线平分一组对角10.如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F,若AE=20,CE=15,CF=7,AF=24,则BE的长为()A.10 B. C.15 D.二、填空题(每小题3分,共24分)11.一次函数y=(m-3)x+5的函数值y随着x的增大而减小,则m的取值范围_______.12.已知如图所示,AB=AD=5,∠B=15°,CD⊥AB于C,则CD=___.13.已知点,关于x轴对称,则________.14.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作一条线段的垂直平分线.已知:线段AB.求作:线段AB的垂直平分线.小红的作法如下:如图,①分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于点C;②再分别以点A和点B为圆心,大于AB的长为半径(不同于①中的半径)作弧,两弧相交于点D,使点D与点C在直线AB的同侧;③作直线CD.所以直线CD就是所求作的垂直平分线.老师说:“小红的作法正确.”请回答:小红的作图依据是_____.15.如图,点P是平面坐标系中一点,则点P到原点的距离是_____.16.已知关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2,若x1,x2满足3x1=|x2|+2,则m的值为_____17.若二次根式有意义,则x的取值范围是___.18.已知,,,则的值是_______.三、解答题(共66分)19.(10分)如图1,在矩形ABCD中,AB=4,AD=5,E为射线BC上一点,DF⊥AE于F,连结DE.(1)当E在线段BC上时①若DE=5,求BE的长;②若CE=EF,求证:AD=AE;(2)连结BF,在点E的运动过程中:①当△ABF是以AB为底的等腰三角形时,求BE的长;②记△ADF的面积为S1,记△DCE的面积为S2,当BF∥DE时,请直接写出S1:S2的值.20.(6分)一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟进水量和出水量是两个常数.容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)求y关于x的函数解析式;(2)每分钟进水、出水各多少升?21.(6分)平面直角坐标系xOy中,直线y=x+b与直线y=x交于点A(m,1).与y轴交于点B(1)求m的值和点B的坐标;(2)若点C在y轴上,且△ABC的面积是1,请直接写出点C的坐标.22.(8分)如图所示,已知:Rt△ABC中,∠ACB=90°.作∠BAC的平分线AM交BC于点D,在所作图形中,将Rt△ABC沿某条直线折叠,使点A与点D重合,折痕EF交AC于点E,交AB于点F,连接DE、DF,再展回到原图形,得到四边形AEDF.(1)试判断四边形AEDF的形状,并证明;(2)若AB=10,BC=8,在折痕EF上有一动点P,求PC+PD的最小值.23.(8分)阅读下列一段文字,然后回答下列问题.已知在平面内有两点、,其两点间的距离,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可化简为或.(1)已知、,试求A、B两点间的距离______.已知M、N在平行于y轴的直线上,点M的纵坐标为4,点N的纵坐标为-1,试求M、N两点的距离为______;(2)已知一个三角形各顶点坐标为、、,你能判定此三角形的形状吗?说明理由.(3)在(2)的条件下,平面直角坐标系中,在x轴上找一点P,使的长度最短,求出点P的坐标及的最短长度.24.(8分)如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ;(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.25.(10分)已知a=,求的值.26.(10分)垫球是排球运动的一项重要技术.下列图表中的数据分别是甲、乙、内三个运动员十次垫球测试的成绩,规则为每次测试连续垫球10个,每垫球到位1个记1分.测试序号12345678910成绩(分)7687758787(1)写出运动员甲测试成绩的众数和中位数;(2)试从平均数和方差两个角度综合分析,若在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、s丙2=0.81)
参考答案一、选择题(每小题3分,共30分)1、C【解析】
分别利用平行四边形、矩形、菱形及正方形的判定方法对四个选项逐项判断即可.【详解】A.利用平行四边形的判定定理可知两组对边分别相等的四边形是平行四边形正确;B.利用矩形的判定定理可知有一个角是直角的平行四边形是矩形正确;C.根据四条边相等的四边形是菱形可知本选项错误;D.根据正方形的判定定理可知对角线互相垂直的矩形是正方形正确,故选C.【点睛】此题考查正方形的判定,平行四边形的判定,矩形的判定,解题关键在于掌握各性质定义.2、C【解析】
根据平行四边形的性质对A进行判断;根据矩形的性质对B进行判断;根据菱形的性质对C进行判断;根据矩形的判定方法对D进行判断.【详解】解:A、平行四边形的对角线互相平分,所以A选项错误;B、矩形的对角线互相平分且相等,所以B选项错误;C、菱形的对角线互相垂直且平分,所以C选项正确;D、对角线相等的平行四边形是矩形,所以D选项错误.故选:C.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部组成.熟练平行四边形和特殊平行四边形的判定与性质是解决此题的关键.3、B【解析】
根据矩形的性质即可判断;【详解】解:∵四边形ABCD是平行四边形,又∵AB⊥BC,∴∠ABC=90°,∴四边形ABCD是矩形,∴AC=BD.故选B.【点睛】本题考查平行四边形的性质.矩形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4、A【解析】
过点F作FH⊥BC,将的最小值转化为求EF+FH的最小值,易得答案.【详解】解:过点F作FH⊥BC,∵,∴在Rt△FHC中,FH=,∴的最小值即EF+FH的最小值,∴当E,F,H三点共线时,EF+FH取最小值,最小值为AB的长度3,即的最小值为3,故选A.【点睛】本题主要考查了含30°直角三角形的性质,通过作辅助线将所求线段进行转化是解题关键.5、D【解析】
由AB=2BC可得由于△OAB的面积为2可得,由于点A是反比例函数可得由于m<0可求m,n的值,即可求m+n的值。【详解】解:∵AB=2BC∴∵△OAB的面积为2∴,∵点A是反比例函数∴又∵m<0∴m=-6同理可得:n=-2∴m+n=-8故答案为:D【点睛】本题考查了反比例函数与几何图形,熟练掌握反比例函数与三角形面积的关系是解题的关键.6、B【解析】
根据众数的定义,可判断A;根据平均数的计算方法,可判断B;根据中位数的定义,可判断C;根据折线统计图中的数据,可判断D.【详解】A.出现次数最多的是58,众数是58,故A正确;B.平均数为:,故B错误;C.由小到大顺序排列数据28,36,42,58,58,70,75,83,中位数是=58,故C正确;D.由折线统计图看出每月阅读量超过40本的有6个月,故D正确;故选:B【点睛】此题考查折线统计图,算术平均数,中位数,众数,解题关键在于看懂图中数据.7、D【解析】试题分析:根据菱形、矩形的判定,平行四边形、矩形的性质进行判断:A.对角线垂直平分的四边形是菱形,所以A正确;B.平行四边形的对角线相互平分,所以B正确;C.矩形的对角线相等,所以C正确;D.对角线相等的平行四边形是矩形,所以D错误;考点:菱形、矩形的判定,平行四边形、矩形的性质.8、D【解析】
根据正比例函数的性质,时,随的增大而减小,即,即可得解.【详解】根据题意,得即故答案为D.【点睛】此题主要考查正比例函数的性质,熟练掌握,即可解题.9、C【解析】
根据矩形的性质逐项分析即可.【详解】A.四边相等是菱形的性质,不是矩形的性质,故不符合题意;B.对角线互相垂直是菱形的性质,不是矩形的性质,故不符合题意;C.对角线相等是是矩形的性质,故符合题意;D.每条对角线平分一组对角是菱形的性质,不是矩形的性质,故不符合题意;故选C.【点睛】本题考查了矩形的性质:①矩形的对边平行且相等;②矩形的四个角都是直角;③矩形的对角线相等且互相平分;10、C【解析】分析:根据平行四边形的面积,可得设则在Rt中,用勾股定理即可解得.详解:∵四边形ABCD是平行四边形,∴∴设则在Rt中,即解得(舍去),故选C.点睛:考查了平行四边形的面积,平行四边形的性质,勾股定理等,难度较大,根据面积得出是解题的关键.二、填空题(每小题3分,共24分)11、m<1【解析】
一次函数y=kx+b(k≠2)的k<2时,y的值随x的增大而减小,据此可解答.【详解】∵一次函数y=(m-1)x+5,y随着自变量x的增大而减小,∴m-1<2,解得:m<1,故答案是:m<1.【点睛】本题考查了一次函数图象与系数的关系.一次函数y=kx+b图象与y轴的正半轴相交⇔b>2,一次函数y=kx+b图象与y轴的负半轴相交⇔b<2,一次函数y=kx+b图象过原点⇔b=2.函数值y随x的增大而减小⇔k<2;函数值y随x的增大而增大⇔k>2.12、【解析】
根据等边对等角可得∠ADB=∠B,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠DAC=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半可得CD=AD.【详解】∵AB=AD,∴∠ADB=∠B=15°,∴∠DAC=∠ADB+∠B=30°,又∵CD⊥AB,∴CD=AD=×5=.故答案为:.【点睛】本题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.13、【解析】
根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即可求出答案.【详解】解:∵点,关于x轴对称,
∴,
∴.
故答案为:.【点睛】此题主要考查了关于x、y轴对称点的坐标特点,关键是熟练掌握坐标的变化规律.14、到线段两个端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线.【解析】分析:根据线段垂直平分线的作法即可得出结论.详解:如图,∵由作图可知,AC=BC=AD=BD,∴直线CD就是线段AB的垂直平分线.故答案为:到线段两个端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线.点睛:本题考查的是作图-基本作图,熟知线段垂直平分线的作法是解答此题的关键.15、1【解析】
连接PO,在直角坐标系中,根据点P的坐标是(),可知P的横坐标为,纵坐标为,然后利用勾股定理即可求解.【详解】连接PO,∵点P的坐标是(),
∴点P到原点的距离==1.故答案为:1【点睛】此题主要考查学生对勾股定理、坐标与图形性质的理解和掌握,解答此题的关键是明确点P的横坐标为,纵坐标为.16、2【解析】
根据方程的系数结合根的判别式,即可得出△=20-2m≥0,解之即可得出m的取值范围.由根与系数的关系可得x1+x2=6①、x1•x2=m+2②,分x2≥0和x2<0可找出3x1=x2+2③或3x1=-x2+2④,联立①③或①④求出x1、x2的值,进而可求出m的值.【详解】∵关于x的一元二次方程x2﹣6x+m+2=0有两个实数根x1,x2,∴△=(﹣6)2﹣2(m+2)=20﹣2m≥0,解得:m≤1,∴m的取值范围为m≤1.∵关于x的一元二次方程x2﹣6x+m+2=0有两个实数根x1,x2,∴x1+x2=6①,x1•x2=m+2②.∵3x1=|x2|+2,当x2≥0时,有3x1=x2+2③,联立①③解得:x1=2,x2=2,∴8=m+2,m=2;当x2<0时,有3x1=﹣x2+2④,联立①④解得:x1=﹣2,x2=8(不合题意,舍去).∴符合条件的m的值为2.故答案是:2.【点睛】本题考查了根与系数的关系以及一元二次方程的解,熟练掌握根与系数的关系公式:,是解题的关键.17、【解析】
试题分析:根据题意,使二次根式有意义,即x﹣1≥0,解得x≥1.故答案是x≥1.【点睛】考点:二次根式有意义的条件.18、【解析】
首先根据a+b=−8,和ab=10确定a和b的符号,然后对根式进行化简,然后代入求解即可.【详解】解:原式=则原式=故答案为:.【点睛】本题考查了根式的化简求值,正确确定a和b的符号是解决本题的关键.三、解答题(共66分)19、(1)①BE=2;②证明见解析;(2)①BE=2;②S1:S2=1【解析】【分析】(1)①在矩形ABCD中,∠B=∠DCE=90°,BC=AD=5,DC=AB=4,由勾股定理求得CE的长,即可求得BE的长;②证明△CED≌△DEF,可得∠CED=∠FED,从而可得∠ADE=∠AED,即可得到AD=AE;(2)①分两种情况点E在线段BC上、点E在BC延长线上两种情况分别讨论即可得;②S1:S2=1,当BF//DE时,延长BF交AD于G,由已知可得到四边形BEDG是平行四边形,继而可得S△DEF=S平行四边形BEDG,S△BEF+S△DFG=S平行四边形BEDG,S△ABG=S△CDE,根据面积的知差即可求得结论.【详解】(1)①在矩形ABCD中,∠B=∠DCE=90°,BC=AD=5,DC=AB=4,∵DE=5,∴CE==3,∴BE=BC-CE=5-3=2;②在矩形ABCD中,∠DCE=90°,AD//BC,∴∠ADE=∠DEC,∠DCE=∠DFE,∵CE=EF,DE=DE,∴△CED≌△DEF(HL),∴∠CED=∠FED,∴∠ADE=∠AED,∴AD=AE;(2)①当点E在线段BC上时,AF=BF,如图所示:∴∠ABF=∠BAF,∵∠ABF+∠EBF=90°,∠BAF+∠BEF=90°,∴∠EBF=∠BEF,∴EF=BF,∴AF=EF,∵DF⊥AE,∴DE=AD=5,在矩形ABCD中,CD=AB=4,∠DCE=90°,∴CE=3,∴BE=5-3=2;当点E在BC延长线上时,AF=BF,如图所示,同理可证AF=EF,∵DF⊥AE,∴DE=AD=5,在矩形ABCD中,CD=AB=4,∠DCE=90°,∴CE=3,∴BE=5+3=8,综上所述,可知BE=2或8;②S1:S2=1,解答参考如下:当BF//DE时,延长BF交AD于G,在矩形ABCD中,AD//BC,AD=BC,AB=CD,∠BAG=∠DCE=90°,∵BF//DE,∴四边形BEDG是平行四边形,∴BE=DG,S△DEF=S平行四边形BEDG,∴AG=CE,S△BEF+S△DFG=S平行四边形BEDG,∴△ABG≌△CDE,∴S△ABG=S△CDE,∵S△ABE=S平行四边形BEDG,∴S△ABE=S△BEF+S△DFG,∴S△ABF=S△DFG,∴S△ABF+S△AFG=S△DFG+S△AFG即S△ABG=S△ADF,∴S△CDE=S△ADF,即S1:S2=1.【点睛】本题考查了矩形的性质、全等三角形的判定与性质、勾股定理等,综合性较强,有一定的难度,熟练掌握和灵活用相关知识是解题的关键.20、(1);(2)每分钟进水、出水各5L,L.【解析】
(1)根据题意和函数图象可以求得y与x的函数关系式;(2)根据函数图象中的数据可以求得每分钟进水、出水各多少升.【详解】解:(1)当0≤x≤4时,设y关于x的函数解析式是y=kx,4k=20,得k=5,即当0≤x≤4时,y与x的函数关系式为y=5x,当4<x≤12时,设y与x的函数关系式为y=ax+b,,得,即当4≤x≤12时,y与x的函数关系式为,由上可得,;(2)进水管的速度为:20÷4=5L/min,出水管的速度为:L/min,答:每分钟进水、出水各5L,L.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21、(1)m=2,B(0,2);(2)C(0,-1)或(0,-3).【解析】
(1)依据一次函数图象上点的坐标特征,即可得到m的值和点B的坐标;(2)依据点C在y轴上,且△ABC的面积是1,即可得到BC=1,进而得出点C的坐标.【详解】(1)∵直线y=x+b与直线y=x交于点A(m,1),∴m=1,∴m=2,∴A(2,1),代入y=x+b,可得×2+b=1,∴b=-2,∴B(0,-2).(2)点C(0,-1)或C(0,-3).理由:∵△ABC的面积是1,点C在y轴上,∴|BC|×2=1,∴|BC|=1,又∵B(0,-2),∴C(0,-1)或C(0,-3).【点睛】本题考查一次函数的交点问题以及三角形的面积,解答本题的关键是明确题意,找出所求问题需要的条件.22、(1)见解析;(2)PC+PD的最小值为:1.【解析】
(1)根据对称性,围绕证明对角线互相垂直平分找条件;(2)求线段和最小的问题,P点的确定方法是:找D点关于直线EF的对称点A,再连接AC,AC与直线EF的交点即为所求.【详解】解:(1)四边形AEDF为菱形,证明:由折叠可知,EF垂直平分AD于G点,
又∵AD平分∠BAC,
∴△AEG≌△AFG,∴GE=GF,∵EF垂直平分AD,∴EF、AD互相垂直平分,
∴四边形AEDF为菱形(对角线互相垂直平分的四边形是菱形).
(2)已知D点关于直线EF的对称点为A,AC与EF的交点E即为所求的P点,
PC+PD的最小值为:CP+DP=CE+DE=CE+AE=AC==1.故答案为:(1)见解析;(2)PC+PD的最小值为:1.【点睛】本题考查折叠问题以及菱形的判定.解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后线段相等.23、(1)13,5;(2)等腰直角三角形,理由见解析;(3)当P的坐标为()时,PD+PF的长度最短,最短长度为.【解析】
(1)根据阅读材料中A和B的坐标,利用两点间的距离公式即可得出答案;由于M、N在平行于y轴的直线上,根据M和N的纵坐标利用公式即可求出MN的距离;(2)由三个顶点的坐标分别求出DE,DF,EF的长,即可判定此三角形的形状;(3)作F关于x轴的对称点,连接,与x轴交于点P,此时最短,最短距离为,P的坐标即为直线与x轴的交点.【详解】解:(1)∵、∴故A、B两点间的距离为:13.∵M、N在平行于y轴的直线上,点M的纵坐标为4,点N的纵坐标为-1∴故M、N两点的距离为5.(2)∵、、∴∴DE=DF,∴△DEF为等腰直角三角形(3)作F关于x轴的对称点,连接,与x轴交于点P,此时DP+PF最短设直线的解析式为y=kx+b将D(1,6),(4,-2)代入得:解得∴直线的解析式为:令y=0,解得,即P的坐标为()∵PF=∴PD+PF=PD+==故当P的坐标为()时,PD+PF的长度最短,最短长度为.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 沈阳理工大学《传感与测试技术》2023-2024学年第一学期期末试卷
- 国有土地委托经营管理合同
- 合同编504条与民法典61条
- 大班音乐课件P《春雨沙沙》
- 2024年六盘水客运从业资格证考试一点通
- 2024个人短期借款合同书
- 会议备忘录范文6篇-20220308150300
- 2024中国工商银行借贷合同范本
- 2024版家政服务合同样本
- 2024个人小额贷款合同书范本
- 《万维网服务大揭秘》课件 2024-2025学年人教版新教材初中信息技术七年级全一册
- 2024年新华社招聘应届毕业生及留学回国人员129人历年高频难、易错点500题模拟试题附带答案详解
- 人教版(2024新版)七年级上册英语Unit 5单元测试卷(含答案)
- (完整版)新概念英语第一册单词表(打印版)
- 美食行业外卖平台配送效率提升方案
- 中国民用航空局信息中心招聘笔试题库2024
- 芯片设计基础知识题库100道及答案(完整版)
- 2025届高考语文一轮复习:文言文概括和分析 课件
- 年产10万套新能源车电池托盘项目可行性研究报告写作模板-申批备案
- 《大学美育》 课件 4.模块五 第二十四章 时空综合的影视艺术之美
- 2022-2023学年广东省广州市天河区六年级(上)期末数学试卷(含答案)
评论
0/150
提交评论