山东省青岛4中2024届八年级数学第二学期期末联考模拟试题含解析_第1页
山东省青岛4中2024届八年级数学第二学期期末联考模拟试题含解析_第2页
山东省青岛4中2024届八年级数学第二学期期末联考模拟试题含解析_第3页
山东省青岛4中2024届八年级数学第二学期期末联考模拟试题含解析_第4页
山东省青岛4中2024届八年级数学第二学期期末联考模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省青岛4中2024届八年级数学第二学期期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列判断正确的是()A.四条边相等的四边形是正方形 B.四个角相等的四边形是矩形C.对角线垂直的四边形是菱形 D.对角线相等的四边形是平行四边形2.下列计算正确的是()A.+= B.÷=C.2×3=6 D.﹣2=﹣3.若实数a满足,那么a的取值情况是()A. B. C.或 D.4.是整数,那么整数x的值是()A.6和3 B.3和1 C.2和18 D.只有185.如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以正方形的对角线OA1为边作正方形OA1A2B1,再以正方形的对角线OA2为边作正方形OA1A2B1,…,依此规律,则点A2017的坐标是()A.(21008,0) B.(21008,﹣21008) C.(0,21010) D.(22019,﹣22019)6.小玲的爸爸在钉制平行四边形框架时,采用了一种方法:如图所示,将两根木条AC、BD的中点重叠并用钉子固定,则四边形ABCD就是平行四边形,这种方法的依据是()A.对角线互相平分的四边形是平行四边形B.一组对边平行且相等的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形D.两组对边分别平行的四边形是平行四边形7.若a,b,c满足则关于x的方程的解是()A.1,0 B.-1,0 C.1,-1 D.无实数根8.如图,在△ABC中,AB=3,BC=4,AC=5,点D在边BC上,以AC为对角线的所有平行四边形ADCE中,DE的最小值是()A.2 B.3 C.4 D.59.在下面的汽车标志图形中,是中心对称图形但不是轴对称图形有()A.2个B.3个C.4个D.5个10.如图,将绕点按逆时针方向旋转得到(点的对应点是点,点的对应点是点),连接,若,则的度数为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,直线l为正比例函数y=x的图象,点A1的坐标为(1,0),过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x轴的垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形AnBnCnDn的面积是_____.12.如果一个多边形的每一个外角都等于,则它的内角和是_________.13.如果三角形三边长分别为,k,,则化简得___________.14.2-1=_____________15.如果最简二次根式与最简二次根式同类二次根式,则x=_______.16.小玲在一次班会中参加知识抢答活动,现有语文题道,数学题道,综合题道,她从中随机抽取道,抽中数学题的概率是_________.17.20190=__________.18.一组数据2,x,4,6,7,已知这组数据的众数是6,那么这组数据的方差是________.三、解答题(共66分)19.(10分)如图,点E是正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.20.(6分)某校学生会向全校名学生发起了爱心捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图1和图2,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为人,图中的值是.(2)补全图2的统计图.(3)求本次调查获取的样本数据的平均数、众数和中位数;(4)根据样本数据,估计该校本次活动捐款金额为元的学生人数.21.(6分)如图,直线与坐标轴交于点、两点,直线与直线相交于点,交轴于点,且的面积为.(1)求的值和点的坐标;(2)求直线的解析式;(3)若点是线段上一动点,过点作轴交直线于点,轴,轴,垂足分别为点、,是否存在点,使得四边形为正方形,若存在,请求出点坐标,若不存在,请说明理由.22.(8分)已知一次函数,完成下列问题:(1)在所给直角坐标系中画出此函数的图象;(2)根据图象回答:当______时,.23.(8分)如图1,在平面直角坐标系中,直线l:y=x+2与x轴交于点A,与y轴交于点B,点C在x轴的正半轴上,且OC=2OB.(1)点F是直线BC上一动点,点M是直线AB上一动点,点H为x轴上一动点,点N为x轴上另一动点(不与H点重合),连接OF、FH、FM、FN和MN,当OF+FH取最小值时,求△FMN周长的最小值;(2)如图2,将△AOB绕着点B逆时针旋转90°得到△A′O′B,其中点A对应点为A′,点O对应点为O',连接CO',将△BCO'沿着直线BC平移,记平移过程中△BCO'为△B'C'O″,其中点B对应点为B',点C对应点为C',点O′对应点为O″,直线C'O″与x轴交于点P,在平移过程中,是否存在点P,使得△O″PC为等腰三角形?若存在请直接写出点P的坐标;若不存在,请说明理由.24.(8分)阅读材料:在实数范围内,当且时,我们由非负数的性质知道,所以,即:,当且仅当=时,等号成立,这就是数学上有名的“均值不等式”,若与的积为定值.则有最小值:请问:若,则当取何值时,代数式取最小值?最小值是多少?25.(10分)如图,在△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB于E,(1)若CD=1cm,求AC的长;(2)求证:AB=AC+CD.26.(10分)已知深港两地的高铁站深圳北、九龙西两站相距约40km.现高铁与地铁冋时从深圳北出发驶向九龙西,高铁的平均速度比地铁快70km/h,当高铁到达九龙西站时,地铁恰好到达距离深圳北站12km处的福田站,求高铁的平均速度.(不考虑换乘时间).

参考答案一、选择题(每小题3分,共30分)1、B【解析】

由题意根据正方形、矩形、菱形、平行四边形的判定分别对每一项进行分析判断即可.【详解】解:A.四条边相等的四边形是菱形,故本选项错误;B.四个角相等的四边形是矩形,故本选项正确;C.对角线垂直的平行四边形是菱形,故本选项错误;D.对角线互相平分的四边形是平行四边形,故本选项错误.故选:B.【点睛】本题考查正方形、平行四边形、矩形以及菱形的判定.注意掌握正方形是菱形的一种特殊情况,且正方形还是一种特殊的矩形.2、D【解析】

直接利用二次根式混合运算法则计算得出答案.【详解】解:A、+,无法计算,故此选项错误;B、÷=,故此选项错误;C、2×3=18,故此选项错误;D、﹣2=﹣,正确.故选D.【点睛】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.3、D【解析】

根据二次根式的性质即可解答.【详解】由题意可知:=﹣a+2=﹣(a﹣2),∴a﹣2≤0,∴a≤2,故选D.【点睛】本题考查了二次根式的性质,熟知是解决问题的关键.4、C【解析】

根据二次根式的运算法则即可求出答案.【详解】解:原式=,∵是整数,∴或,解得:x=2或x=18,故选:C.【点睛】本题考查二次根式的运算,解题的关键是熟练运用二次根式的性质,本题属于基础题型.5、B【解析】

根据正方形的性质可找出部分点An的坐标,根据坐标的变化即可找出A(2,2)(n为自然数),再根据2017=252×8+1,即可找出点A2019的坐标.【详解】观察发现:A(0,1)、A(1,1),A(2,0),A(2,−2),A(0,−4),A(−4,−4),A(−8,0),A(−8,8),A(0,16),A(16,16)…,∴A(2,2)(n为自然数).∵2017=252×8+1,∴A2017的坐标是(21008,﹣21008).故选B.【点睛】此题考查规律型:点的坐标,解题关键在于找到规律6、A【解析】

根据对角线互相平分的四边形是平行四边形即可得出结论.【详解】解:∵O是AC、BD的中点,

∴OA=OC,OB=OD,

∴四边形ABCD是平行四边形(对角线互相平分的四边形是平行四边形);

故选:A.【点睛】本题考查了平行四边形的判定定理;熟练掌握平行四边形的判定定理是解题的关键.7、C【解析】【分析】由方程组得到a+c=0,即a=-c,b=0,再代入方程可求解.【详解】因为a+b+c=0——①;a-b+c=0——②且a≠0,联立两式①+②得a+c=0,即a=-c,b=0,代入ax²+bx+c=0得:ax²-a=0解得x=1或x=-1故选:C【点睛】本题考核知识点:一元二次方程.解题关键点:由方程组推出a,b,c的特殊关系.8、B【解析】

由平行四边形的对角线互相平分、垂线段最短知,当OD⊥BC时,DE线段取最小值.【详解】在中,∴,,,∴.∴为直角三角形,且.∵四边形是平行四边形,∴,.∴当取最小值时,线段最短,此时.∴是的中位线.∴.∴.故选B.【点睛】本题考查了勾股定理逆定理,平行四边形的性质,三角形的中位线以及垂线段最短.此题难度适中,注意掌握数形结合思想的应用.9、A【解析】第2个、第5个是中心对称图形,不是轴对称图形,共2个故选B.10、B【解析】

根据旋转的性质得到∠BAB′=∠CAC′=120°,AB=AB′,根据等腰三角形的性质易得∠AB′B=30°,再根据平行线的性质即可得∠C′AB′=∠AB′B=30°.【详解】解:如图示,将△ABC绕点A按逆时针方向旋转l20°得到△AB′C′,

∴∠BAB′=∠CAC′=120°,AB=AB′,

∴,∵AC′∥BB′,

∴∠C′AB′=∠AB′B=30°,

故选:B.【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.二、填空题(每小题3分,共24分)11、()n﹣1【解析】

根据正比例函数的性质得到∠D1OA1=45°,分别求出正方形A1B1C1D1的面积、正方形A2B2C2D2的面积,总结规律解答.【详解】∵直线l为正比例函数y=x的图象,∴∠D1OA1=45°,∴D1A1=OA1=1,∴正方形A1B1C1D1的面积=1=()1﹣1,由勾股定理得,OD1=,D1A2=,∴A2B2=A2O=,∴正方形A2B2C2D2的面积==()2﹣1,同理,A3D3=OA3=,∴正方形A3B3C3D3的面积==()3﹣1,…由规律可知,正方形AnBnCnDn的面积=()n﹣1,故答案为()n﹣1.【点睛】本题考查的是正方形的性质、一次函数图象上点的坐标特征,根据一次函数解析式得到∠D1OA1=45°,正确找出规律是解题的关键.12、【解析】

根据任何多边形的外角和都是360°,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.n边形的内角和是(n-2)•180°,代入公式就可以求出内角和.【详解】解:多边形边数为:360°÷30°=12,

则这个多边形是十二边形;

则它的内角和是:(12-2)•180°=1°.

故答案为:1.【点睛】本题考查多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.13、11-3k.【解析】

求出k的范围,化简二次根式得出|k-6|-|2k-5|,根据绝对值性质得出6-k-(2k-5),求出即可.【详解】∵一个三角形的三边长分别为、k、,∴-<k<+,∴3<k<4,=-|2k-5|,=6-k-(2k-5),=-3k+11,=11-3k,故答案为:11-3k.【点睛】本题考查了绝对值,二次根式的性质,三角形的三边关系定理的应用,解此题的关键是去绝对值符号,题目比较典型,但是一道比较容易出错的题目.14、【解析】

根据负指数幂的运算法则即可解答.【详解】原式=2-1=.【点睛】本题考查了负指数幂的运算法则,牢记负指数幂的运算法则是解答本题的关键.15、1【解析】

∵最简二次根式与最简二次根式是同类二次根式,∴x+3=1+1x,解得:x=1.当x=1时,6和是最简二次根式且是同类二次根式.16、【解析】

随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.【详解】解:抽中数学题的概率为,

故答案为:.【点睛】本题考查了概率,正确利用概率公式计算是解题的关键.17、1【解析】

任何不为零的数的零次方都为1.【详解】任何不为零的数的零次方都等于1.=1【点睛】本题考查零指数幂,熟练掌握计算法则是解题关键.18、3.1【解析】

根据众数的定义先求出x的值,然后再根据方差的公式进行计算即可得.【详解】解:已知一组数据1,x,4,6,7的众数是6,说明x=6,则平均数=(1+6+4+6+7)÷5=15÷5=5,则这组数据的方差==3.1,故答案为3.1.【点睛】本题考查了众数、方差等,熟练掌握众数的定义、方差的计算公式是解题的关键.三、解答题(共66分)19、(1)证明见解析(2)△CEF是直角三角形【解析】(1)由正方形的性质、等腰三角形的性质可得AB=CB,BE=BF,再通过等量相减,即可得出∠ABF=∠CBE,由SAS即可证出△ABF≌△CBE;(2)求∠CEF=90°,即可证出△CEF是直角三角形.证明:(1)∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∵△EBF是等腰直角三角形,其中∠EBF=90°,∴BE=BF,∴∠ABC﹣∠CBF=∠EBF﹣∠CBF,∴∠ABF=∠CBE.在△ABF和△CBE中,有{AB=CB∴△ABF≌△CBE(SAS).(2)△CEF是直角三角形.理由如下:∵△EBF是等腰直角三角形,∴∠BFE=∠FEB=45°,∴∠AFB=180°﹣∠BFE=135°,又∵△ABF≌△CBE,∴∠CEB=∠AFB=135°,∴∠CEF=∠CEB﹣∠FEB=135°﹣45°=90°,∴△CEF是直角三角形.20、(1)、;(2)详见解析;(3)平均数:16;众数:10;中位数:15;(4)608.【解析】

(1)由元的人数及其所占百分比可得总人数,用元人数除以总人数可得m的值;(2)总人数乘以元对应百分比可得其人数,据此可补全图形;(3)根据统计图可以分别得到本次调查获取的样本数据的平均数、众数和中位数;(4)根据统计图中的数据可以估计该校本次活动捐款金额为元的学生人数.【详解】(1)本次接受随机抽样调查的学生人数为人.∵.故答案为、;(2)元的人数为,补全图形如下:(3)本次调查获取的样本数据的平均数是:(元),本次调查获取的样本数据的众数是:元,本次调查获取的样本数据的中位数是:元;(4)估计该校本次活动捐款金额为元的学生人数为人.【点睛】本题考查了条形统计图、扇形统计图、用样本估计总体、中位数、众数,解题的关键是明确题意,找出所求问题需要的条件.21、(1),点为;(2);(3)存在,点为,理由见解析【解析】

(1)利用一次函数图象上点的坐标特征可求出m的值及点A的坐标;(2)过点P作PH⊥x轴,垂足为H,则PH=,利用三角形的面积公式结合△PAC的面积为,可求出AC的长,进而可得出点C的坐标,再根据点P,C的坐标,利用待定系数法即可求出直线PC的解析式;(3)由题意,可知:四边形EMNQ为矩形,设点E的纵坐标为t,利用一次函数图象上点的坐标特征可得出点E的坐标为(t-3,t)、点Q的坐标为(,t),利用正方形的性质可得出关于t的一元一次方程,解之即可得出结论.【详解】解:(1)把点代入直线,即时,直线,当时,得:,点为(2)过点作轴,垂足为,由(1)得,∴解得:点为设直线为,把点、代入,得:解得:直线的解析式为(3)由已知可得,四边形为矩形,设点的纵坐标为,则得:点为轴点的纵坐标也为点在直线上,当时,又当时,矩形为正方形,所以故点为【点睛】本题考查了一次函数图象上点的坐标特征、三角形的面积、解一元一次方程、待定系数法求一次函数解析式以及正方形的性质,解题的关键是:(1)利用一次函数图象上点的坐标特征,求出m的值及点A的坐标;(2)根据点的坐标,利用待定系数法求出一次函数解析式;(3)利用正方形的性质,找出关于t的一元一次方程.22、(1)答案见解析;(2)<1.【解析】

(1)作出函数图象即可;(2)观察图象即可求解.【详解】(1)画图如下:(2)由图可知,当x<1时,y>1.【点睛】本题考查了一次函数图象与性质,一次函数与不等式之间的关系,利用数形结合思想解题是解决此类题型的关键.23、(1);(2)满足条件的点P为:(8+2,0)或(,0)或(5,0)【解析】

(1)先求出点A,点B坐标,用待定系数法求出直线BC的解析式,作点O关于直线BC的对称点O'(),过点O'作O'H⊥OC于点F,交BC于点H,此时OF+FH的值最小,求出点F坐标,作点F关于直线AB与直线OC的对称点,连接F'F''交直线AB于点M,交直线OC于点N,此时△FMN周长有最小值,由两点距离公式可求△FMN周长的最小值;(2)分O''C=PC,O''P=PC,O''P=O''C三种情况讨论,由等腰三角形的性质可求解.【详解】解:(1)∵直线y=x+2与x轴交于点A,与y轴交于点B,∴当x=0时,y=2,当y=0时,x=﹣2,∴点A(﹣2,0),点B(0,2)∴OB=2∵OC=2OB.∴OC=4∴点C(4,0)设直线BC解析式为:y=kx+2,且过点C(4,0)∴0=4k+2∴k=∴直线BC解析式为:y=x+2,如图,作点O关于直线BC的对称点O'(),过点O'作O'H⊥OC于点F,交BC于点H,此时OF+FH的值最小.∴点F的横坐标为∴点F()作点F关于直线OC的对称点F'(),作点F关于直线AB的对称点F''()连接F'F''交直线AB于点M,交直线OC于点N,此时△FMN周长有最小值,∴△FMN周长的最小值=(2)∵将△AOB绕着点B逆时针旋转90°得到△A'O’B,∴O'点坐标(2,2)设直线O'C的解析式为:y=mx+b∴∴∴直线O'C的解析式为:y=﹣x+4如图,过点O'作O'E⊥OC∴OE=2,O'E=2∴EC=O'E=2∴∠O'CE=45°∵将△BCO'沿着直线BC平移,∴O''O'∥BC,O'C∥O''C',∴设O'O''的解析式为y=x+n,且过(2,2)∴2=×2+n∴n=3∴直线O'O''的解析式为y=x+3若CO''=CP,∵O'C∥O''C',∴∠O'CE=∠O''PC=45°∵CO''=CP∴∠CO''P=∠O''PC=45°∴∠O''CP=90°∴点O''的横坐标为4,∴当x=4时,y=×4+3=1∴点O''(4,1)∴CO''=1=CP∴点P(5,0)若CO''=O''P,如图,过点O''作O''N⊥CP于N,∵O'C∥O''C',∴∠O'CE=∠O''PC=45°∵CO''=O''P∴∠O''CP=∠CPO''=45°,∴∠CO''P=90°,且CO''=O''P,O''N⊥CP∴CN=PN=O''N=CP设CP=a,∴CN=PN=O''N=CP=a∴点O''(4+a,a),且直线O'O''的解析式为y=﹣x+3∴a=﹣(4+a)+3∴a=∴CP=∴点P(,0)若CP=O''P,如图,过点O''作O''N⊥CP于N∵O'C∥O''C',∴∠O'CE=∠O''PM=45°∴∠O''PN=∠O''PM=45°,且O''N⊥CP∴∠NPO''=∠PO''N=45°∴PN=O''N∴O''P=PN=CP设PN=b,则O''N=b,CP=PO'

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论