




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西南宁市第十八中学2024年八年级下册数学期末学业水平测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.若一个等腰三角形的腰长为5,底边长为6,则底边上的高为()A.4 B.3 C.5 D.62.药品研究所开发一种抗菌新药,经过多年的动物实验之后首次用于临床人体试验,测得成人服药后血液中药物浓度(微克/毫升)与服药后的时间(时)之间的函数关系如图所示,则当,的取值范围是()A. B. C. D.3.下列图形中,既是轴对称图形,又是中心对称图形的是()A.线段 B.直角三角形 C.等边三角形 D.平行四边形4.在解分式方程+=2时,去分母后变形正确的是()A. B.C. D.5.方程x2x的解是()A.x1 B.x11,x20C.x0 D.x11,x206.某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S(吨)与时间t(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是()A.4小时 B.4.4小时 C.4.8小时 D.5小时7.已知2是关于x的方程x2﹣2ax+4=0的一个解,则a的值是()A.1 B.2 C.3 D.48.下列是最简二次根式的是A. B. C. D.9.化简二次根式的结果为()A.﹣2a B.2a C.2a D.﹣2a10.对于函数y=﹣2x+1,下列结论正确的是()A.它的图象必经过点(﹣1,3) B.它的图象经过第一、二、三象限C.当时,y>0 D.y值随x值的增大而增大二、填空题(每小题3分,共24分)11.一组数据从小到大排列:0、3、、5,中位数是4,则________.12.已知点P(x1,y1),Q(x2,y2)是反比例函数y=(x>0)图象上两点,若y1>y2,则x1,x2的大小关系是_____.13.如图,点A在双曲线上,点B在双曲线上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.14.在“童心向党,阳光下成长”的合唱比赛中,30个参赛队的成绩被分为5组,第1~4组的频数分别为2,10,7,8,则第5组的频率为________.15.已知一次函数y=2x+b,当x=3时,y=10,那么这个一次函数在y轴上的交点坐标为________.16.菱形的周长为8cm,一条对角线长2cm,则另一条对角线长为cm.。17.如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A,B,C分别落在点A',B',C'处,且点A',C',B在同一条直线上,则AB的长为__________.18.不等式3x+1<-2的解集是________.三、解答题(共66分)19.(10分)已知,直线y=2x+3与直线y=﹣2x﹣1.(1)求两直线与y轴交点A,B的坐标;(2)求两直线交点C的坐标;(3)求△ABC的面积.20.(6分)某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:每人加工件数540450300240210120人数112632(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)若以本次统计所得的月加工零件数的平均数定为每位工人每月的生产定额,你认为这个定额是否合理,为什么?21.(6分)解下列一元二次方程(1)(2)22.(8分)某港口P位于东西方向的海岸线上.在港口P北偏东25°方向上有一座小岛A,且距离港口20海里;在港口与小岛的东部海域上有一座灯塔B,△PAB恰好是等腰直角三角形,其中∠B是直角;(1)在图中补全图形,画出灯塔B的位置;(保留作图痕迹)(2)一艘货船C从港口P出发,以每小时15海里的速度,沿北偏西20°的方向航行,请求出1小时后该货船C与灯塔B的距离.23.(8分)如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC,(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC=°.24.(8分)已知y-2与x+3成正比例,且当x=-4时,y=0,求当x=-1时,y的值.25.(10分)在△ABC中,AM是中线,D是AM所在直线上的一个动点(不与点A重合),DE∥AB交AC所在直线于点F,CE∥AM,连接BD,AE.(1)如图1,当点D与点M重合时,观察发现:△ABM向右平移BC到了△EDC的位置,此时四边形ABDE是平行四边形.请你给予验证;(2)如图2,图3,图4,是当点D不与点M重合时的三种情况,你认为△ABM应该平移到什么位置?直接在图中画出来.此时四边形ABDE还是平行四边形吗?请你选择其中一种情况说明理由.26.(10分)已知结论:在直角三角形中,30°所对的直角边是斜边的一半,请利用这个结论进行下列探究活动.如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=,D为AB中点,P为AC上一点,连接PD,把△APD沿PD翻折得到△EPD,连接CE.(1)AB=_____,AC=______.(2)若P为AC上一动点,且P点从A点出发,沿AC以每秒一单位长度的速度向C运动,设P点运动时间为t秒.①当t=_____秒时,以A、P、E、D、为顶点可以构成平行四边形.②在P点运动过程中,是否存在以B、C、E、D为顶点的四边形是平行四边形?若存在,请求出t的值;若不存在,请说明理由.
参考答案一、选择题(每小题3分,共30分)1、A【解析】
根据等腰三角形底边高线和中线重合的性质,则BD=DC=3,可以根据勾股定理计算底边的高AD=.【详解】解:如图,在△ABC中,AB=AC=5,AD⊥BC,则AD为BC边上的中线,即D为BC中点,∴BD=DC=3,在直角△ABD中AD==1.故选:A.【点睛】本题考查了勾股定理在直角三角形中的正确运用,考查了等腰三角形底边高线、中线重合的性质,本题中根据勾股定理正确计算AD是解题的关键.2、C【解析】
根据图像分别求出和时的函数表达式,再求出当x=1,x=3,x=6时的y值,从而确定y的范围.【详解】解:设当时,设,,解得:,;当时,设,,解得:,;当时,,当时,有最大值8,当时,的值是,∴当时,的取值范围是.故选:.【点睛】本题主要考查了求一次函数表达式和函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.3、A【解析】
根据中心对称图形的定义逐项识别即可,在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心,旋转前后图形上能够重合的点叫做对称点.【详解】A.既是轴对称图形,又是中心对称图形,符合题意;B.既不是轴对称图形,也不是中心对称图形,不符合题意;C.是轴对称图形,不是中心对称图形,不符合题意;D.不是轴对称图形是中心对称图形,不符合题意;故选A.【点睛】本题考查了中心对称图形的识别,熟练掌握中心对称图形的定义是解答本题的关键.4、A【解析】
本题考查对一个分式确定最简公分母,去分母得能力.观察式子x-1和1-x互为相反数,可得1-x=-(x-1),所以可得最简公分母为x-1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.【详解】方程两边都乘以x-1,
得:3-(x+2)=2(x-1).
故答案选A.【点睛】本题考查了解分式方程,解题的关键是方程两边都乘以最简公分母.5、B【解析】
先变形得一元二次方程的一般形式,再用分解因式法解方程即可.【详解】解:移项,得x2-x=0,原方程即为x(x-1)=0,所以,x=0或x-1=0,所以x11,x20.故选B.【点睛】本题考查了一元二次方程的解法,熟知一元二次方程的四种解法(完全开平方法、配方法、公式法和分解因式法)并能根据方程的特点灵活应用是求解的关键.6、B【解析】分析:由图中可以看出,2小时调进物资30吨,调进物资共用4小时,说明物资一共有60吨;2小时后,调进物资和调出物资同时进行,4小时时,物资调进完毕,仓库还剩10吨,说明调出速度为:(60-10)÷2吨,需要时间为:60÷25时,由此即可求出答案.解答:解:物资一共有60吨,调出速度为:(60-10)÷2=25吨,需要时间为:60÷25=2.4(时)∴这批物资从开始调进到全部调出需要的时间是:2+2.4=4.4小时.7、B【解析】
把x=1代入方程x1-1ax+4=0,得到关于a的方程,解方程即可.【详解】∵x=1是方程x1-1ax+4=0的一个根,∴4-4a+4=0,解得a=1.故选B.【点睛】本题考查了一元二次方程的解的概念,解题时注意:使方程两边成立的未知数的值叫方程的解.8、B【解析】
直接利用二次根式的性质分别化简即可得出答案.【详解】A、,故不是最简二次根式,故此选项错误;B、是最简二次根式,符合题意;C、,故不是最简二次根式,故此选项错误;D、,故不是最简二次根式,故此选项错误;故选:B.【点睛】此题主要考查了最简二次根式,正确化简二次根式是解题关键.9、A【解析】
利用根式化简即可解答.【详解】解:∵﹣8a3≥0,∴a≤0∴=2|a|=﹣2a故选A.【点睛】本题考查二次根式性质与化简,熟悉掌握运算法则是解题关键.10、A【解析】
根据一次函数图象上点的坐标特征和一次函数的性质依次判断,可得解.【详解】解:当x=﹣1时,y=3,故A选项正确,∵函数y=-2x+1图象经过第一、二、四象限,y随x的增大而减小,∴B、D选项错误,∵y>0,∴﹣2x+1>0∴x<,∴C选项错误.故选:A.【点睛】本题考查一次函数图象上点的坐标特征,一次函数的性质,熟练掌握一次函数的性质是解题的关键.二、填空题(每小题3分,共24分)11、5【解析】
根据中位数的求法可以列出方程,解得x=5【详解】解:∵一共有4个数据∴中位数应该是排列后第2和第3个数据的平均数∴可得:解得:x=5故答案为5【点睛】此题考查中位数,熟练掌握中位数的求法是解题关键12、x1<x1.【解析】
根据题目中的函数解析式可以判断函数图象在第几象限和y随x的变化趋势,从而可以解答本题.【详解】∵反比例函数y=(x>0),∴该函数图象在第一象限,y随x的增大而减小,∵点P(x1,y1),Q(x1,y1)是反比例函数y=(x>0)图象上两点,y1>y1,∴x1<x1,故答案为:x1<x1.【点睛】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.13、2【解析】
如图,过A点作AE⊥y轴,垂足为E,∵点A在双曲线上,∴四边形AEOD的面积为1∵点B在双曲线上,且AB∥x轴,∴四边形BEOC的面积为3∴四边形ABCD为矩形,则它的面积为3-1=214、0.1.【解析】
直接利用频数÷总数=频率,进而得出答案.【详解】解:∵30个参赛队的成绩被分为5组,第1~4组的频数分别为2,10,7,8,∴第5组的频率为:(30-2-10-7-8))÷30=0.1.故答案为:0.1.【点睛】本题考查频数与频率,正确掌握频率求法是解题关键.15、(0,4)【解析】解:∵在一次函数y=2x+b中,当x=3时,y=10,∴6+b=10,解得:b=4,∴一次函数的解析式为y=2x+4,∴当x=0时,y=4,∴这个一次函数在y轴上的交点坐标为(0,4).故答案为:(0,4).点睛:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.16、【解析】解:先根据菱形的四条边长度相等求出边长,再由菱形的对角线互相垂直平分根据勾股定理即可求出另一条对角线的长。17、【解析】
由C′D∥BC,可得比例式,设AB=a,构造方程即可.【详解】设AB=a,根据旋转的性质可知C′D=a,A′C=2+a,∵C′D∥BC,∴,即,解得a=−1−(舍去)或−1+.所以AB长为.故答案为.【点睛】本题主要考查了旋转的性质、相似三角形的判定和性质,解题的关键是找到图形中相似基本模型“A”型.18、x<-1.【解析】试题分析:3x+1<-2,3x<-3,x<-1.故答案为x<-1.考点:一元一次不等式的解法.三、解答题(共66分)19、(1)A(0,3),B(0,-1);(2)点C的坐标为(-1,1);(3)S△ABC=2.【解析】
(1)利用待定系数法即可解决问题;(2)构建方程组确定交点坐标即可;(3)过点C作CD⊥AB交y轴于点D,根据S△ABC=AB•CD计算即可.【详解】(1)在y=2x+3中,当x=0时,y=3,即A(0,3);在y=-2x-1中,当x=0时,y=-1,即B(0,-1);(2)依题意,得,解得;∴点C的坐标为(-1,1);(3)过点C作CD⊥AB交y轴于点D;∴CD=1;∵AB=3-(-1)=4;∴S△ABC=AB•CD=×4×1=2.【点睛】本题考查两条直线平行或相交问题、三角形的面积等知识,解题的关键是熟练掌握基本知识,学会利用方程组确定两个函数的交点坐标,属于中考常考题型.20、(1)平均数:260件;中位数:240件;众数:240件(2)不合理,定额为240较为合理【解析】
分析:(1)平均数=加工零件总数÷总人数,中位数是将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.本题中应是第7个数.众数又是指一组数据中出现次数最多的数据.240出现6次.(2)应根据中位数和众数综合考虑.详解:(1)平均数:;中位数:240件;众数:240件.(2)不合理,因为表中数据显示,每月能完成260件的人数一共是4人,还有11人不能达到此定额,尽管260是平均数,但不利于调动多数员工的积极性,因为240既是中位数,又是众数,是大多数人能达到的定额,故定额为240较为合理.点睛:本题考查了平均数、中位数和众数的知识,在求本题的平均数时,应注意先算出15个人加工的零件总数.为了大多数人能达到的定额,制定标准零件总数时一般应采用中位数或众数.21、(1),;(2),.【解析】
(1)将方程左边因式分解,继而求解可得;(2)运用配方法求解即可.【详解】(1)∵(x+3)(x+7)=0,∴x+3=0或x+7=0,解得:,;(2),,∴∴.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键22、(1)如图,点B即为所求见解析;(2)出发1小时后,货船C与灯塔B的距离为5海里.【解析】
(1)轨迹题意画出图形即可;(2)首先证明∠CPB=90°,求出PB、PC利用勾股定理即可解决问题;【详解】(1)如图,点B即为所求(2)如图,∠CPN=20°,∠NPA=25°,∠APB=45°,∠CPB=90°在Rt△ABP中,∵AP=20,BA=BP,∴PB=10在Rt△PCB中,由勾股定理得,CB===5,∴出发1小时后,货船C与灯塔B的距离为5海里.【点睛】此题是一道方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.23、(1)证明见解析;(2)1.【解析】
(1)根据等边对等角可得∠B=∠ACF,然后利用SAS证明△ABE≌△ACF即可;(2)根据△ABE≌△ACF,可得∠CAF=∠BAE=30°,再根据AD=AC,利用等腰三角形的性质即可求得∠ADC的度数.【详解】(1)∵AB=AC,∴∠B=∠ACF,在△ABE和△ACF中,,∴△ABE≌△ACF(SAS);(2)∵△ABE≌△ACF,∠BAE=30°,∴∠CAF=∠BAE=30°,∵AD=AC,∴∠ADC=∠ACD,∴∠ADC==1°,故答案为1.【点睛】本题考查了全等三角形的判定与性质、等腰三角形的性质,熟练掌握相关性质与定理是解题的关键.24、2.【解析】
利用正比例函数的定义,设y-1=k(x+3),然后把已知的对应值代入求出k得到y与x之间的函数关系式;计算自变量为-1对应的y的值即可【详解】由题意,设
y-1=k(x+3)(k≠0),得:0-1=k(-4+3).解得:k=1.所以当x=-1时,y=1(-1+3)+1=2.即当x=-1时,y的值为2.【点睛】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b,将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.也考查了一次函数的性质.25、(1)见解析;(2)画图见解析.【解析】
(1)根据一组对边平行且相等可以证明;(2)根据一组对边平行且相等可以证明.【详解】(1)∵平移,∴AB=DE,且DE∥BA,∴四边形ABDE是平行四边形;(2)平移到△DEM'位置,如图所示:如图2∵平移,∴AB=DE,且DE∥BA,∴四边形ABDE是平行四边形.【点睛】本题考查了平行四边形的判定,熟练运用判定解决问题是本题关键.26、(1)4,6;(2)①;②存在,t=2或t=6.【解析】
(1)根据含30°角的直角三角形性质可得AB的长,利用勾股定理即可求出AC的长;(2)①根据平行四边形的性质可得AD//PE,AD=PE,根据折叠性质可得PE=AP,即可得AP=AD,由D为AB中点可得AD的长,即可得AP的长,进而可求出t的值;②分两种情况讨论:当BD为边时,设DE与PC相交于O,根据三角形内角和可得∠B=60°,根据平行四边形的性质可得CE=BD,CE//BD,BC//DE,可得∠ECP=∠A=30°,∠CED=∠ADE=∠B=60°,根据折叠性质可得∠ADP=∠EDP=30°,AP=PE,即可证明∠ADP=∠A,可得AP=PD=PE,可得∠PED=∠PDE=30°,即可得∠PEC=90°,根据含30°角的直角三角形的性质可得PC=2PE,利用勾股定理列方程可求出PE的长,即可得AP的长;当BD为对角线时,可证明平行四边形BCDE是菱形,根据菱形的性质可得∠DCE=30°,可证明DE=AD,∠ADC=∠CDE=120°,利用SAS可证明△ACD≌△ECD,可得AC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 海淀区初中二模数学试卷
- 医院资产管理课件
- 中国异叶天南星行业市场全景监测及投资策略研究报告
- 2025年围棋棋子市场分析报告
- 2025年种桑养蚕项目可行性研究报告
- 2024-2030年中国番茄沙司行业市场深度分析及投资战略规划建议报告
- 2025年中国机动车行业市场全景调研及投资规划建议报告
- 2025年中国功率计行业市场深度分析及投资战略研究报告
- 健康的重要性
- 健康理疗师培训课件下载
- 2025年农村经济与农业发展考试试题及答案
- 14.3角的平分线第1课时角的平分线的性质课件人教版数学八年级上册
- 2024年云南省文山州州属事业单位选调工作人员笔试真题
- 2025安全生产法律法规专题知识培训
- Q∕SY 01006-2016 二氧化碳驱注气井保持井筒完整性推荐作法
- DB31∕650-2020 非织造布单位产品能源消耗限额
- 质量风险管理监理实施细则
- 嵌入式软件助理工程师认证考试试题题库
- 外商在越南设立代表处和分公司的规定(共10页)
- 中铝洛铜实习报告
- SH0622-95乙丙共聚物粘度指数改进剂
评论
0/150
提交评论