版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年辽宁省铁岭市八年级数学第二学期期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列说法:①平方等于64的数是8;②若a,b互为相反数,ab≠0,则;③若,则的值为负数;④若ab≠0,则的取值在0,1,2,-2这四个数中,不可取的值是0.正确的个数为()A.0个 B.1个 C.2个 D.3个2.下列各组线段能构成直角三角形的是()A. B. C. D.3.若点P(﹣3+a,a)在正比例函数y=﹣x的图象上,则a的值是()A. B.﹣ C.1 D.﹣14.对于函数,下列结论正确的是()A.它的图象必经过点(-1,1) B.它的图象不经过第三象限C.当时, D.的值随值的增大而增大5.要比较两名同学共六次数学测试中谁的成绩比较稳定,应选用的统计量为()A.中位数B.方差C.平均数D.众数6.如图,数轴上所表示关于x的不等式组的解集是()A. B. C. D.7.如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为()A. B. C. D.8.有一组数据如下:3,a,4,6,7,它们的平均数是5,那么这组数据的方差是()A.10 B. C. D.29.如图,在△ABC中,AB=10,BC=6,点D为AB上一点,BC=BD,BE⊥CD于点E,点F为AC的中点,连接EF,则EF的长为()A.1 B.2 C.3 D.410.一次函数与的图像在同一坐标系中的图象大致是()A. B.C. D.二、填空题(每小题3分,共24分)11.如图,在矩形中,沿着对角线翻折能与重合,且与交于点,若,则的面积为__________.12.如图将△ABC沿BC平移得△DCE,连AD,R是DE上的一点,且DR:RE=1:2,BR分别与AC,CD相交于点P,Q,则BP:PQ:QR=__.13.已知一组数据,,的方差为4,那么数据,,的方差是___________.14.若,则=_____.15.如图,在菱形ABCD中,∠A=70º,E,F分别是边AB和BC的中点,EP⊥CD于P,则∠FPC的度数为___________.16.若分式方程有增根,则等于__________.17.已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k的值为_____.18.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是________.三、解答题(共66分)19.(10分)已知:如图,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).(1)四边形EFGH的形状是,证明你的结论;(2)当四边形ABCD的对角线满足条件时,四边形EFGH是矩形;(3)你学过的哪种特殊四边形的中点四边形是矩形?.(不证明)20.(6分)如图所示,在等边三角形中,,射线,点从点出发沿射线以的速度运动,同时点从点出发沿射线以的速度运动,设运动时间为.(1)填空:当为时,是直角三角形;(2)连接,当经过边的中点时,四边形是否是特殊四边形?请证明你的结论.(3)当为何值时,的面积是的面积的倍.21.(6分)已知一次函数.(1)若这个函数的图象经过原点,求a的值.(2)若这个函数的图象经过一、三、四象限,求a的取值范围.22.(8分)如图,在中,AD是高,E、F分别是AB、AC的中点.(1)求证:EF垂直平分AD;(2)若四边形AEDF的周长为24,,求AB的长.23.(8分)某超市销售一种成本为40元千克的商品,若按50元千克销售,一个月可售出500千克,现打算涨价销售,据市场调查,涨价x元时,月销售量为m千克,m是x的一次函数,部分数据如下表:
观察表中数据,直接写出m与x的函数关系式:_______________:当涨价5元时,计算可得月销售利润是___________元;当售价定多少元时,会获得月销售最大利润,求出最大利润.24.(8分)如图,已知一次函数的图象与坐标轴分别交于A、B点,AE平分,交轴于点E.(1)直接写出点A和点B的坐标.(2)求直线AE的表达式.(3)过点B作BFAE于点F,过点F分别作FD//OA交AB于点D,FC//AB交轴于点C,判断四边形ACFD的形状并说明理由,求四边形ACFD的面积.25.(10分)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是ts(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:四边形AEFD是平行四边形;(2)当t为何值时,△DEF为直角三角形?请说明理由.26.(10分)今年5月19日为第29个“全国助残日”我市某中学组织了献爱心捐款活动,该校数学课外活动小组对本次捐款活动做了一次抽样调查,并绘制了如下不完整的频数分布表和频数分布直方图(每组含前一个边界,不含后一个边界).捐款额(元)频数百分比37.5%717.5%ab1025%615%总计100%(1)填空:________,________.(2)补全频数分布直方图.(3)该校有2000名学生估计这次活动中爱心捐款额在的学生人数.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
根据平方、相反数的定义、绝对值的性质依次判定各项后即可解答.【详解】①平方等于64的数是±8;②若a,b互为相反数,ab≠0,则;③若,可得a≥0,则的值为负数或0;④若ab≠0,当a>0,b>0时,=1+1=2;当a>0,b<0时,=1-1=0;当a<0,b>0时,=-1+1=0;当a<0,b<0时,=-1-1=-2;所以的取值在0,1,2,-2这四个数中,不可取的值是1.综上,正确的结论为②,故选B.【点睛】本题考查了平方的计算、相反数的定义及绝对值的性质,熟练运用相关知识是解决问题的关键.2、D【解析】
欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】A、12+22≠22,不能构成直角三角形;B、72+122≠132,不能构成直角三角形;C、52+82≠102,不能构成直角三角形;D、,能构成直角三角形.故选:D.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.勾股定理的逆定理:若三角形三边满足a2+b2=c2,那么这个三角形是直角三角形.3、C【解析】
把点P坐标代入正比例函数解析式得到关于a的方程,解方程即可得.【详解】解:由题意得:a=﹣(-3+a),解得:a=1,故选C.【点睛】本题考查了正比例函数图象上点的坐标特征,熟知正比例函数图象上点的坐标一定满足正比例函数的解析式是解题的关键.4、B【解析】
将x=-1代入一次函数解析式求出y值即可得出A错误;由一次函数解析式结合一次函数系数与图象的关系即可得出B正确;求出一次函数与x轴的交点即可得出C错误;由一次函数一次项系数k=-3<0即可得出D不正确.此题得解.【详解】A、令y=-3x+4中x=-1,则y=8,∴该函数的图象不经过点(-1,1),即A错误;B、∵在y=-3x+4中k=-3<0,b=4>0,∴该函数图象经过第一、二、四象限,即B正确;C、令y=-3x+4中y=0,则-3x+4=0,解得:x=,∴该函数的图象与x轴的交点坐标为(,0),∴当x<时,y>0,故C错误;D、∵在y=-3x+4中k=-3<0,∴y的值随x的值的增大而减小,即D不正确.故选:B.【点睛】本题考查了一次函数的性质以及一次函数图象与系数的关系,解题的关键是逐条分析四个选项.本题属于基础题,难度不大,解决该题时,熟悉一次函数的性质、一次函数图象上点的坐标特征以及一次函数图象与系数的关系是解题的关键.5、B【解析】分析:方差是用来衡量一组数据波动大小的量,中位数、众数、平均数是反映一组数据的集中程度详解:由于方差反映数据的波动情况,所以要比较两名同学在四次数学测试中谁的成绩比较稳定,应选用的统计量是方差.故选B.点睛:本题考查了统计量的选取问题,熟练掌握各统计量的特征是解答本题的关键.中位数反映一组数据的中等水平,众数反映一组数据的多数水平,平均数反映一组数据的平均水平,方差反映一组数据的稳定程度,方差越大越不稳定,方差越小越稳定.6、A【解析】试题解析:由数轴可得:关于x的不等式组的解集是:x≥1.故选A.7、B【解析】
由正方形的性质和已知条件得出BC=CD=,∠BCD=90°,CE=CF=,得出△CEF是等腰直角三角形,由等腰直角三角形的性质得出EF的长,即可得出正方形EFGH的周长.【详解】解:∵正方形ABCD的面积为1,∴BC=CD=,∠BCD=90°.∵E、F分别是BC、CD的中点,∴CE=BC=,CF=CD=,∴CE=CF,∴△CEF是等腰直角三角形,∴EF=CE=,∴正方形EFGH的周长=4EF=4×=.故选:B.【点睛】本题考查了正方形的性质、等腰直角三角形的判定与性质;熟练掌握正方形的性质,由等腰直角三角形的性质求出EF的长是解决问题的关键.8、D【解析】
∵3、a、4、6、7,它们的平均数是5,∴(3+a+4+6+7)=5,解得,a=5S2=[(3-5)2+(5-5)2+(4-5)2+(6-5)2+(7-5)2]=2,故选D.9、B【解析】
根据等腰三角形的性质求出CE=ED,根据三角形中位线定理解答.【详解】解:BD=BC=6,∴AD=AB﹣BD=4,∵BC=BD,BE⊥CD,∴CE=ED,又CF=FA,∴EF=AD=2,故选B.【点睛】本题考查的是三角形中位线定理、等腰三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.10、D【解析】
按照当k、b为正数或负数逐次选择即可.【详解】解:当k>0,b>0时,过一二三象限,也过一二三象限,各选项都不符合;当k<0,b<0时,过二三四象限,也过二三四象限,各选项都不符合;当k>0,b<0,过一三四象限,过一二四象限,图中D符合条件,故选:D.【点睛】本题考查的是一次函数的图象,解题的关键是熟知k、b在图象上代表的意义.二、填空题(每小题3分,共24分)11、【解析】
由矩形的性质及翻折变换先证AF=CF,再在Rt△CDF中利用勾股定理求出CF的长,可通过S△AFC=AF•CD求出△ACF的面积.【详解】∵四边形ABCD为矩形,
∴∠D=90°,AD∥BC,CD=AB=1,AD=BC=3,
∴∠FAC=∠ACB,
又∵∠B沿着对角线AC翻折能与∠E重合,
∴∠ACB=∠ACF,
∴∠FAC=∠ACF,
∴FA=FC,
在Rt△DFC中,
设FC=x,则DF=AD-AF=3-x,
∵DF2+CD2=CF2,
∴(3-x)2+12=x2,
解得,x=,
∴AF=,
∴S△AFC=AF•CD
=××1
=.故答案是:.【点睛】考查了矩形的性质,轴对称称的性质,勾股定理,三角形的面积等,解题关键是要先求出AF的长,转化为求FC的长,在Rt△CDF中利用勾股定理求得.12、2:1:1【解析】
根据平移的性质得到AC∥DE,BC=CE,得到△BPC∽△BRE,根据相似三角形的性质得到PC=DR,根据△PQC∽△RQD,得到PQ=QR,即可求解.【详解】由平移的性质可知,AC∥DE,BC=CE,
∴△BPC∽△BRE,
∴,
∴PC=RE,BP=PR,
∵DR:RE=1:2,
∴PC=DR,
∵AC∥DE,
∴△PQC∽△RQD,
∴=1,
∴PQ=QR,
∴BP:PQ:QR=2:1:1,
故答案为2:1:1.【点睛】本题考查了相似三角形的判定和性质,平移的性质,掌握相似三角形的判定定理和性质定理是解题的关键.13、4【解析】
设数据,,的平均数为m,据此可得数据a+2,b+2,c+2的平均数为m+2,然后根据方差公式进行计算即可得.【详解】设数据,,的平均数为m,则有a+b+c=3m,=4,∴a+2,b+2,c+2的平均数为(a+2+b+2+c+2)÷3=(3m+6)÷3=m+2,方差为:==4,故答案为:4.【点睛】本题考查了方差的计算,熟练掌握方差的计算公式是解题的关键.14、【解析】
设=m,则有x=3m,y=4m,z=5m,代入原式即可得出答案.【详解】解:设=m,∴x=3m,y=4m,z=5m,代入原式得:.故答案为.【点睛】本题考查了代数式求值和等比例的性质,掌握并灵活运用等比例性质是解答本题的关键.15、35°【解析】
根据菱形的邻角互补求出∠B,再求出BE=BF,然后根据等腰三角形两底角相等求出∠BEF,再求出∠FEP,取AD的中点G,连接FG交EP于O,然后判断出FG垂直平分EP,再根据线段垂直平分线上的点到两端点的距离相等可得EF=FP,利用等边对等角求出∠FPE,再根据∠FPC=90°-∠FPE代入数据计算即可得解.【详解】在菱形ABCD中,连接EF,如图,∵∠A=70°,∴∠B=180°-870°=110°,∵E,F分别是边AB,BC的中点,∴BE=BF,∴∠BEF=(180°-∠B)=(180°-110°)=35°,∵EP⊥CD,AB∥CD,∴∠BEP=∠CPE=90°,∴∠FEP=90°-35°=55°,取AD的中点G,连接FG交EP于O,∵点F是BC的中点,G为AD的中点,∴FG∥DC,∵EP⊥CD,∴FG垂直平分EP,∴EF=PF,∴∠FPE=∠FEP=55°,∴∠FPC=90°-∠FPE=90°-55°=35°.故答案为:35°.【点睛】本题考查了菱形的性质,线段垂直平分线上的点到两端点的距离相等的性质,等边对等角的性质,熟记性质并作出辅助线求出EF=PF是解题的关键,也是本题的难点.16、4【解析】
增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m的值.【详解】解:方程两边都乘以(x-2),得,∵原方程的增根是,把增根代入,得:,∴,故答案为:4.【点睛】本题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.17、﹣1【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解关于k的方程,然后根据一元二次方程的定义确定k的值即可.【详解】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,整理得k2+1k=0,解得k1=0,k2=﹣1,因为k≠0,所以k的值为﹣1.故答案为:﹣1.【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.18、【解析】
由一共有10种等可能的结果,小军能一次打开该旅行箱的只有1种情况,直接利用概率公式求解即可求得答案.【详解】∵一共有10种等可能的结果,小军能一次打开该旅行箱的只有1种情况,
∴小军能一次打开该旅行箱的概率是:.故答案是:.【点睛】解题关键是根据概率公式(如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=).三、解答题(共66分)19、(1)平行四边形;(2)互相垂直;(3)菱形.【解析】分析:(1)、连接BD,根据三角形中位线的性质得出EH∥FG,EH=FG,从而得出平行四边形;(2)、首先根据三角形中位线的性质得出平行四边形,根据对角线垂直得出一个角为直角,从而得出矩形;(3)、根据菱形的性质和三角形中位线的性质得出平行四边形,然后根据对角线垂直得出矩形.详解:(1)证明:连结BD.∵E、H分别是AB、AD中点,∴EH∥BD,EH=BD,同理FG∥BD,FG=BD,∴EH∥FG,EH=FG,∴四边形EFGH是平行四边形(2)当四边形ABCD的对角线满足互相垂直的条件时,四边形EFGH是矩形.理由如下:如图,连结AC、BD.∵E、F、G、H分别为四边形ABCD四条边上的中点,∴EH∥BD,HG∥AC,∵AC⊥BD,∴EH⊥HG,又∵四边形EFGH是平行四边形,∴平行四边形EFGH是矩形;(3)菱形的中点四边形是矩形.理由如下:如图,连结AC、BD.∵E、F、G、H分别为四边形ABCD四条边上的中点,∴EH∥BD,HG∥AC,FG∥BD,EH=BD,FG=BD,∴EH∥FG,EH=FG,∴四边形EFGH是平行四边形.∵四边形ABCD是菱形,∴AC⊥BD,∵EH∥BD,HG∥AC,∴EH⊥HG,∴平行四边形EFGH是矩形.点睛:本题主要考查的就是三角形中位线的性质以及特殊平行四边形的判定,属于中等难度题型.三角形的中位线平行且等于第三边的一半.解决这个问题的关键就是要明确特殊平行四边形的判定定理.20、(1)或;(2)是平行四边形,见解析;(3)或.【解析】
(1)根据题意可分两种情况讨论:①当时,因为是等边三角形,所以时满足条件;②当时,因为是等边三角形,所以,得到,故,即可得到答案;(2)判断出得出,即可得出结论;(3)先判断出和的边和上的高相等,进而判断出,再分两种情况,建立方程求解即可得出结论.【详解】解:(1)①当时,是等边三角形,,,从点出发沿射线以的速度运动,当时,是直角三角形;②当时,是等边三角形,,,,,,从点出发沿射线以的速度运动,当时,是直角三角形;故答案为:或;(2)是平行四边形.理由:如图,,,经过边的中点,,,,四边形是平行四边形;(3)设平行线与的距离为,边上的高为,的边上的高为,的面积是的面积的倍,,当点在线段上时,,,;当点在的延长线上时,,,即:秒或秒时,的面积是的面积的倍,故答案为:或.【点睛】此题是四边形综合题,主要考查了等边三角形的性质,全等三角形的判定和性质,用方程的思想解决问题是解本题的关键.21、(1);(2)【解析】
(1)y=kx+b经过原点则b=0,据此求解;
(2)y=kx+b的图象经过一、三、四象限,k>0,b<0,据此列出不等式组求解即可.【详解】(1)由题意得,,∴.(2)由题意得解得,∴a的取值范围是.【点睛】考查了一次函数的性质,了解一次函数的性质是解答本题的关键。22、(1)证明过程见解析;(2)AB的长为15.【解析】
(1)根据线段两端点距离相等的点在线段的垂直平分线即可证明该结论;(2)根据,可得AF+DF=AC,DE+AE=AB,即可得出答案.【详解】(1)证明:∵△ADB和△ADC是直角三角形且E、F分别是AB、AC的中点∴,∴E在线段AD的垂直平分线上,F在线段AD的垂直平分线上∴EF垂直平分AD(2)∵,∴AF+DF=AC,DE+AE=AB又∵四边形AEDF的周长为24,∴AB=24-9=15故AB的长为15.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质以及到线段两端点距离相等的点在线段的垂直平分线的性质,熟记性质是解决本题的关键.23、(1),6750;(2)70元,最大利润为9000元.【解析】
(1)根据表格数据得出m与x的函数关系式,将x=55代入求出即可;(2)根据总利润=每千克利润×数量列出函数关系式求解即可.【详解】解:设m与x的函数关系式为,由题意可得,,解得,,则m与x的函数关系式为,当时,,则月销售利润是元;故答案为;6750;解:设月销售的利润为y元,由题意可得,,因此,当时,,此时,售价为元,所以,当售价定为70元时,会获得月销售最大利润,最大利润为9000元.【点睛】此题主要考查了一次函数的应用,以及二次函数的应用,得出二次函数解析式是解题关键.24、(1)A(0,6),B(8,0);(2)y=−2x+6;(3)四边形ACFD是菱形,证明见解析;S四边形ACFD=20【解析】
(1)一次函数,令x=0求出y值,可得A点坐标,令y=0,求出x值,可得B点坐标,此题得解;(2)已知A,B点坐标,结合勾股定理可求出AB的长度,再利用角平分线的性质即可求出点E的坐标,根据点A、E的坐标利用待定系数法即可求出直线AE的表达式;(3)过点B作BFAE于点F,过点F分别作FD//OA交AB于点D,FC//AB交轴于点C,连接CD交AF于点G,可得四边形ACFD是平行四边形,证明AD=DF,即可得到四边形ACFD是菱形,证明△AOE∽△BFE,即可得到,,求得BF和EF,进而求得四边形ACFD的面积.【详解】(1)∵当x=0时,y=6∴A(0,6)当y=0时,解得x=8∴B(8,0)∴A(0,6),B(8,0)(2)过点E作EM⊥AB于D∴OA=6,OB=8,∴AB=∵AE平分∠BAO,交x轴于点E∴OE=ME∴∴∴OE=BE∵OE+BE=OB=8∴OE=3,BE=5∴点E的坐标为(3,0)设直线AE的表达式为y=kx+b将A(0,6)、E(3,0)代入y=kx+b解得:∴直线AE的表达式为y=−2x+6
(3)过点B作BFAE于点F,过点F分别作FD//OA交AB于点D,FC//AB交轴于点C,连接CD交AF于点G∵FD//OA,FC//AB∴四边形ACFD是平行四边形∴∠CAF=∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年机载检测设备项目规划申请报告范稿
- 2024年医护管理通讯装置项目规划申请报告范文
- 2024年激光癌症诊断仪项目立项申请报告的范文
- 2024年中小型电动机项目提案报告
- 2024-2030年中国电子制造外包行业竞争格局商业模式分析报告
- 2024年氟喹诺酮项目申请报告模板
- 2024-2030年中国生猪养殖行业发展前景及投资规模分析报告
- 2024-2030年中国生态农业和绿色食品行业竞争力分析及发展规模研究报告
- 2024年年人脸识别项目规划申请报告
- 2024-2030年中国物流金融产业创新模式分析及发展展望研究报告
- 新课标-人教版数学六年级上册第五单元《圆》单元教材解读
- 2022湖北汉江王甫洲水力发电有限责任公司招聘试题及答案解析
- 2019新人教必修1unit2Travelling-Around整单元完整教案
- 大学生辩论赛评分标准表
- 诊所污水污物粪便处理方案及周边环境
- 江苏开放大学2023年秋《马克思主义基本原理 060111》形成性考核作业2-实践性环节(占过程性考核成绩的30%)参考答案
- 《我是班级的主人翁》的主题班会
- 酒店安全设施及安全制度
- 近代化的早期探索与民族危机的加剧 单元作业设计
- 租赁机械设备施工方案
- 二年级家长会语文老师课件
评论
0/150
提交评论