2024届内蒙古自治区鄂尔多斯市达标名校中考联考数学试卷含解析_第1页
2024届内蒙古自治区鄂尔多斯市达标名校中考联考数学试卷含解析_第2页
2024届内蒙古自治区鄂尔多斯市达标名校中考联考数学试卷含解析_第3页
2024届内蒙古自治区鄂尔多斯市达标名校中考联考数学试卷含解析_第4页
2024届内蒙古自治区鄂尔多斯市达标名校中考联考数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届内蒙古自治区鄂尔多斯市达标名校中考联考数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图所示,若将△ABO绕点O顺时针旋转180°后得到△A1B1O,则A点的对应点A1点的坐标是()A.(3,﹣2) B.(3,2) C.(2,3) D.(2,﹣3)2.如图,两个同心圆(圆心相同半径不同的圆)的半径分别为6cm和3cm,大圆的弦AB与小圆相切,则劣弧AB的长为()A.2πcm B.4πcm C.6πcm D.8πcm3.将抛物线y=﹣(x+1)2+4平移,使平移后所得抛物线经过原点,那么平移的过程为()A.向下平移3个单位 B.向上平移3个单位C.向左平移4个单位 D.向右平移4个单位4.估计介于()A.0与1之间 B.1与2之间 C.2与3之间 D.3与4之间5.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为(

)A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣56.已知为单位向量,=,那么下列结论中错误的是()A.∥ B. C.与方向相同 D.与方向相反7.已知二次函数(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程的两实数根是A.x1=1,x2=-1 B.x1=1,x2=2C.x1=1,x2=0 D.x1=1,x2=38.安徽省在一次精准扶贫工作中,共投入资金4670000元,将4670000用科学记数法表示为()A.4.67×107 B.4.67×106 C.46.7×105 D.0.467×1079.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正确结论的序号是()A.①② B.①③④ C.①②③⑤ D.①②③④⑤10.根据物理学家波义耳1662年的研究结果:在温度不变的情况下,气球内气体的压强p(pa)与它的体积v(m3)的乘积是一个常数k,即pv=k(k为常数,k>0),下列图象能正确反映p与v之间函数关系的是()A. B.C. D.二、填空题(共7小题,每小题3分,满分21分)11.如图,利用标杆测量建筑物的高度,已知标杆高1.2,测得,则建筑物的高是__________.12.如图,矩形ABCD面积为40,点P在边CD上,PE⊥AC,PF⊥BD,足分别为E,F.若AC=10,则PE+PF=_____.13.如图,在⊙O中,直径AB⊥弦CD,∠A=28°,则∠D=_______.14.若关于x的一元二次方程kx2+2(k+1)x+k-1=0有两个实数根,则k的取值范围是15.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出2个球,都是黄球的概率为.16.如图,在Rt△ABC中,∠ACB=90°,BC=6,CD是斜边AB上的中线,将△BCD沿直线CD翻折至△ECD的位置,连接AE.若DE∥AC,计算AE的长度等于_____.17.若a,b互为相反数,则a2﹣b2=_____.三、解答题(共7小题,满分69分)18.(10分)先化简,再求值:(1+)÷,其中x=+1.19.(5分)如图1为某教育网站一周内连续7天日访问总量的条形统计图,如图2为该网站本周学生日访问量占日访问总量的百分比统计图.请你根据统计图提供的信息完成下列填空:这一周访问该网站一共有万人次;周日学生访问该网站有万人次;周六到周日学生访问该网站的日平均增长率为.20.(8分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.求证:△AEC≌△BED;若∠1=40°,求∠BDE的度数.21.(10分)计算:(﹣2)0+()﹣1+4cos30°﹣|4﹣|22.(10分)如图,在平面直角坐标系中,直线经过点和,双曲线经过点B.(1)求直线和双曲线的函数表达式;(2)点C从点A出发,沿过点A与y轴平行的直线向下运动,速度为每秒1个单位长度,点C的运动时间为t(0<t<12),连接BC,作BD⊥BC交x轴于点D,连接CD,①当点C在双曲线上时,求t的值;②在0<t<6范围内,∠BCD的大小如果发生变化,求tan∠BCD的变化范围;如果不发生变化,求tan∠BCD的值;③当时,请直接写出t的值.23.(12分)已知如图,在△ABC中,∠B=45°,点D是BC边的中点,DE⊥BC于点D,交AB于点E,连接CE.(1)求∠AEC的度数;(2)请你判断AE、BE、AC三条线段之间的等量关系,并证明你的结论.24.(14分)已知:正方形绕点顺时针旋转至正方形,连接.如图,求证:;如图,延长交于,延长交于,在不添加任何辅助线的情况下,请直接写出如图中的四个角,使写出的每一个角的大小都等于旋转角.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】

由题意可知,点A与点A1关于原点成中心对称,根据图象确定点A的坐标,即可求得点A1的坐标.【详解】由题意可知,点A与点A1关于原点成中心对称,∵点A的坐标是(﹣3,2),∴点A关于点O的对称点A'点的坐标是(3,﹣2).故选A.【点睛】本题考查了中心对称的性质及关于原点对称点的坐标的特征,熟知中心对称的性质及关于原点对称点的坐标的特征是解决问题的关键.2、B【解析】

首先连接OC,AO,由切线的性质,可得OC⊥AB,根据已知条件可得:OA=2OC,进而求出∠AOC的度数,则圆心角∠AOB可求,根据弧长公式即可求出劣弧AB的长.【详解】解:如图,连接OC,AO,

∵大圆的一条弦AB与小圆相切,

∴OC⊥AB,

∵OA=6,OC=3,

∴OA=2OC,

∴∠A=30°,

∴∠AOC=60°,

∴∠AOB=120°,

∴劣弧AB的长==4π,

故选B.【点睛】本题考查切线的性质,弧长公式,熟练掌握切线的性质是解题关键.3、A【解析】将抛物线平移,使平移后所得抛物线经过原点,若左右平移n个单位得到,则平移后的解析式为:,将(0,0)代入后解得:n=-3或n=1,所以向左平移1个单位或向右平移3个单位后抛物线经过原点;若上下平移m个单位得到,则平移后的解析式为:,将(0,0)代入后解得:m=-3,所以向下平移3个单位后抛物线经过原点,故选A.4、C【解析】

解:∵,∴,即∴估计在2~3之间故选C.【点睛】本题考查估计无理数的大小.5、A【解析】分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.6、C【解析】

由向量的方向直接判断即可.【详解】解:为单位向量,=,所以与方向相反,所以C错误,故选C.【点睛】本题考查了向量的方向,是基础题,较简单.7、B【解析】试题分析:∵二次函数(m为常数)的图象与x轴的一个交点为(1,0),∴.∴.故选B.8、B【解析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将4670000用科学记数法表示为4.67×106,故选B.【点睛】本题考查了科学记数法—表示较大的数,解题的关键是掌握科学记数法的概念进行解答.9、C【解析】

根据二次函数的性质逐项分析可得解.【详解】解:由函数图象可得各系数的关系:a<0,b<0,c>0,则①当x=1时,y=a+b+c<0,正确;②当x=-1时,y=a-b+c>1,正确;③abc>0,正确;④对称轴x=-1,则x=-2和x=0时取值相同,则4a-2b+c=1>0,错误;⑤对称轴x=-=-1,b=2a,又x=-1时,y=a-b+c>1,代入b=2a,则c-a>1,正确.故所有正确结论的序号是①②③⑤.故选C10、C【解析】【分析】根据题意有:pv=k(k为常数,k>0),故p与v之间的函数图象为反比例函数,且根据实际意义p、v都大于0,由此即可得.【详解】∵pv=k(k为常数,k>0)∴p=(p>0,v>0,k>0),故选C.【点睛】本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.二、填空题(共7小题,每小题3分,满分21分)11、10.5【解析】

先证△AEB∽△ABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴,即:,∴CD=10.5(m).故答案为10.5.【点睛】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键.12、4【解析】

由矩形的性质可得AO=CO=5=BO=DO,由S△DCO=S△DPO+S△PCO,可得PE+PF的值.【详解】解:如图,设AC与BD的交点为O,连接PO,

∵四边形ABCD是矩形

∴AO=CO=5=BO=DO,

∴S△DCO=S矩形ABCD=10,

∵S△DCO=S△DPO+S△PCO,

∴10=×DO×PF+×OC×PE

∴20=5PF+5PE

∴PE+PF=4

故答案为4【点睛】本题考查了矩形的性质,利用三角形的面积关系解决问题是本题的关键.13、34°【解析】分析:首先根据垂径定理得出∠BOD的度数,然后根据三角形内角和定理得出∠D的度数.详解:∵直径AB⊥弦CD,∴∠BOD=2∠A=56°,∴∠D=90°-56°=34°.点睛:本题主要考查的是圆的垂径定理,属于基础题型.求出∠BOD的度数是解题的关键.14、k≥-1【解析】试题解析:∵a=k,b=2(k+1),c=k-1,∴△=4(k+1)2-4×k×(k-1)=3k+1≥1,解得:k≥-13∵原方程是一元二次方程,∴k≠1.考点:根的判别式.15、【解析】

让黄球的个数除以球的总个数即为所求的概率.【详解】解:因为一共10个球,其中3个黄球,所以从袋中任意摸出2个球是黄球的概率是.

故答案为:.【点睛】本题考查了概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.16、2【解析】

根据题意、解直角三角形、菱形的性质、翻折变化可以求得AE的长.【详解】由题意可得,DE=DB=CD=AB,∴∠DEC=∠DCE=∠DCB,∵DE∥AC,∠DCE=∠DCB,∠ACB=90°,∴∠DEC=∠ACE,∴∠DCE=∠ACE=∠DCB=30°,∴∠ACD=60°,∠CAD=60°,∴△ACD是等边三角形,∴AC=CD,∴AC=DE,∵AC∥DE,AC=CD,∴四边形ACDE是菱形,∵在Rt△ABC中,∠ACB=90°,BC=6,∠B=30°,∴AC=2,∴AE=2.故答案为2.【点睛】本题考查翻折变化、平行线的性质、直角三角形斜边上的中线,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.17、1【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.【详解】∵a,b互为相反数,∴a+b=1,∴a2﹣b2=(a+b)(a﹣b)=1,故答案为1.【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键.三、解答题(共7小题,满分69分)18、,1+【解析】

运用公式化简,再代入求值.【详解】原式===,当x=+1时,原式=.【点睛】考查分式的化简求值、整式的化简求值,解答本题的关键是明确它们各自的计算方法.19、(1)10;(2)0.9;(3)44%【解析】

(1)把条形统计图中每天的访问量人数相加即可得出答案;(2)由星期日的日访问总量为3万人次,结合扇形统计图可得星期日学生日访问总量占日访问总量的百分比为30%,继而求得星期日学生日访问总量;(3)根据增长率的算数列出算式,再进行计算即可.【详解】(1)这一周该网站访问总量为:0.5+1+0.5+1+1.5+2.5+3=10(万人次);故答案为10;(2)∵星期日的日访问总量为3万人次,星期日学生日访问总量占日访问总量的百分比为30%,∴星期日学生日访问总量为:3×30%=0.9(万人次);故答案为0.9;(3)周六到周日学生访问该网站的日平均增长率为:=44%;故答案为44%.考点:折线统计图;条形统计图20、(1)见解析;(1)70°.【解析】

(1)根据全等三角形的判定即可判断△AEC≌△BED;

(1)由(1)可知:EC=ED,∠C=∠BDE,根据等腰三角形的性质即可知∠C的度数,从而可求出∠BDE的度数.【详解】证明:(1)∵AE和BD相交于点O,∴∠AOD=∠BOE.在△AOD和△BOE中,∠A=∠B,∴∠BEO=∠1.又∵∠1=∠1,∴∠1=∠BEO,∴∠AEC=∠BED.在△AEC和△BED中,∴△AEC≌△BED(ASA).(1)∵△AEC≌△BED,∴EC=ED,∠C=∠BDE.在△EDC中,∵EC=ED,∠1=40°,∴∠C=∠EDC=70°,∴∠BDE=∠C=70°.【点睛】本题考查了全等三角形的判定与性质,解题的关键是熟练的掌握全等三角形的判定与性质.21、4【解析】

直接利用零指数幂的性质以及负指数幂的性质和特殊角的三角函数值、绝对值的性质分别化简进而得出答案.【详解】(﹣2)0+()﹣1+4cos30°﹣|4﹣|=1+3+4×﹣(4﹣2)=4+2﹣4+2=4.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.22、(1)直线的表达式为,双曲线的表达式为;(2)①;②当时,的大小不发生变化,的值为;③t的值为或.【解析】

(1)由点利用待定系数法可求出直线的表达式;再由直线的表达式求出点B的坐标,然后利用待定系数法即可求出双曲线的表达式;(2)①先求出点C的横坐标,再将其代入双曲线的表达式求出点C的纵坐标,从而即可得出t的值;②如图1(见解析),设直线AB交y轴于M,则,取CD的中点K,连接AK、BK.利用直角三角形的性质证明A、D、B、C四点共圆,再根据圆周角定理可得,从而得出,即可解决问题;③如图2(见解析),过点B作于M,先求出点D与点M重合的临界位置时t的值,据此分和两种情况讨论:根据三点坐标求出的长,再利用三角形相似的判定定理与性质求出DM的长,最后在中,利用勾股定理即可得出答案.【详解】(1)∵直线经过点和∴将点代入得解得故直线的表达式为将点代入直线的表达式得解得∵双曲线经过点,解得故双曲线的表达式为;(2)①轴,点A的坐标为∴点C的横坐标为12将其代入双曲线的表达式得∴C的纵坐标为,即由题意得,解得故当点C在双曲线上时,t的值为;②当时,的大小不发生变化,求解过程如下:若点D与点A重合由题意知,点C坐标为由两点距离公式得:由勾股定理得,即解得因此,在范围内,点D与点A不重合,且在点A左侧如图1,设直线AB交y轴于M,取CD的中点K,连接AK、BK由(1)知,直线AB的表达式为令得,则,即点K为CD的中点,(直角三角形中,斜边上的中线等于斜边的一半)同理可得:A、D、B、C四点共圆,点K为圆心(圆周角定理);③过点B作于M由题意和②可知,点D在点A左侧,与点M重合是一个临界位置此时,四边形ACBD是矩形,则,即因此,分以下2种情况讨论:如图2,当时,过点C作于N又,即由勾股定理得即解得或(不符题设,舍去)当时,同理可得:解得或(不符题设,舍去)综上所述,t的值为或.【点睛

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论