




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省四平市第三中学2024年八年级数学第二学期期末质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B.C. D.2.某家庭今年上半年1至6月份的月平均用水量5t,其中1至5月份月用水量(单位:t)统计表如图所示,根据信息该户今年上半年1至6月份用水量的中位数和众数分别是()月份123456用水量/t36456aA.4,5B.4.5,6C.5,6D.5.5,63.下列运算错误的是()A. B. C. D.4.已知点P(3,4)在函数y=mx+1的图象上,则m=()A.-1 B.0 C.1 D.25.若,则代数式的值是()A.9 B.7 C. D.16.的倒数是()A. B. C. D.7.如图,直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-1.则下列结论:①m<0,n>0;②直线y=nx+4n一定经过点(-4,0);③m与n满足m=1n-1;④当x>-1时,nx+4n>-x+m,其中正确结论的个数是()A.1个 B.1个 C.3个 D.4个8.下列图象能表示一次函数的是()A. B. C. D.9.某中学书法兴趣小组10名成员的年龄情况如下表,则该小组成员年龄的众数和中位数分别是()年龄/岁14151617人数3421A.15,15 B.16,15 C.15,17 D.14,1510.把多项式ax3﹣2ax2+ax分解因式,结果正确的是()A.ax(x2﹣2x) B.ax2(x﹣2)C.ax(x+1)(x﹣1) D.ax(x﹣1)211.如图,菱形的面积为,正方形的面积为,则菱形的边长为()A. B. C. D.12.若,,则代数式的值为A.1 B. C. D.6二、填空题(每题4分,共24分)13.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是.14.已知:正方形,为平面内任意一点,连接,将线段绕点顺时针旋转得到,当点,,在一条直线时,若,,则________.15.已知:线段AB,BC.求作:平行四边形ABCD.以下是甲、乙两同学的作业.甲:①以点C为圆心,AB长为半径作弧;②以点A为圆心,BC长为半径作弧;③两弧在BC上方交于点D,连接AD,CD.四边形ABCD即为所求平行四边形.(如图1)乙:①连接AC,作线段AC的垂直平分线,交AC于点M;②连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD.四边形ABCD即为所求平行四边形.(如图2)老师说甲、乙同学的作图都正确,你更喜欢______的作法,他的作图依据是:______.16.已知一次函数的图象经过第一、二、四象,请你写出一个满足条件的值__________.17.如图是小明统计同学的年龄后绘制的频数直方图,该班学生的平均年龄是__________岁.18.将一次函数y=5x﹣1的图象向上平移3个单位,所得直线不经过第_____象限.三、解答题(共78分)19.(8分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).其中A(1,1)、B(4,4)、C(5,1).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△A2B2C2,A、B、C的对应点分别是A2、B2、C2;(3)连CB2,直接写出点B2、C2的坐标B2:、C2:.20.(8分)某商店的一种服装,每件成本为50元.经市场调研,售价为60元时,可销售800件;售价每提高5元,销售量将减少100件.求每件商品售价是多少元时,商店销售这批服装获利能达到12000元?21.(8分)如图,在四边形ABCD中,AB=AD=4,∠A=60°,BC=4,CD=1.(1)求∠ADC的度数;(2)求四边形ABCD的面积.22.(10分)州教育局为了解我州八年级学生参加社会实践活动情况,随机抽查了某县部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据检测了两幅统计图,下面给出了两幅不完整的统计图(如图)请根据图中提供的信息,回答下列问题:(1)a=,并写出该扇形所对圆心角的度数为,请补全条形图.(2)在这次抽样调查中,众数和中位数分别是多少?(3)如果该县共有八年级学生2000人,请你估计“活动时间不少于7天”的学生人数大约有多少人?23.(10分)已知:如图,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形,使C点与AB边上的一点D重合.(1)当∠A满足什么条件时,点D恰为AB的中点?写出一个你认为适当的条件,并利用此条件证明D为AB的中点;(2)在(1)的条件下,若DE=1,求△ABC的面积.24.(10分)如图,在平面直角坐标系中,四边形ABCD是矩形,AD∥x轴,A(-3,32(1)直接写出B、C、D三点的坐标;(1)将矩形ABCD向右平移m个单位,使点A、C恰好同时落在反比例函数y=kx(25.(12分)利用幂的运算性质计算:26.如图,在Rt△BAC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′,若∠CC′B′=30°,求∠B的度数.
参考答案一、选择题(每题4分,共48分)1、C【解析】
根据轴对称图形与中心对称图形的概念求解.【详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、是轴对称图形,又是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2、D【解析】
先根据平均数的定义求出6月份的用水量,再根据中位数和众数的定义求解可得.【详解】解:根据题意知6月份的用水量为5×6-(3+6+4+5+6)=6(t),
∴1至6月份用水量从小到大排列为:3、4、5、6、6、6,
则该户今年1至6月份用水量的中位数为=5.5、众数为6,
故选:D.【点睛】本题主要考查众数和中位数,解题的关键是根据平均数定义求出6月份用水量及众数和中位数的定义.3、C【解析】
根据二次根的运算法则对选项进行判断即可【详解】A.,所以本选项正确B.,所以本选项正确C.,不是同类二次根式,不能合并,故本选项错误D.,所以本选项正确故选C.【点睛】本题考查二次根,熟练掌握二次根式的性质和运算法则是解题关键4、C【解析】
把点P(3,4)代入函数y=mx+1,求出m的值即可.【详解】点P(3,4)代入函数y=mx+1得,4=3m+1,解得m=1.故选:C.【点睛】本题考查的是一次函数图象上点的坐标特点,比较简单.熟知一次函数图象上点的坐标一定适应此函数的解析式是解答此题的关键.5、D【解析】
本题直接可以把代入到原式进行计算,注意把看作整体用括号括起来,再依次替换原式中的a,按照实数的运算规律计算.【详解】代入得:故答案为D【点睛】本题考察了代值求多项式的值,过程中注意把代入的值整体的替换时,务必打好括号,避免出错.再按照实数的运算规律计算.6、B【解析】
直接利用倒数的定义进而得出答案.【详解】∵×()=1,∴的倒数.故选B.【点睛】此题主要考查了倒数,正确把握倒数的定义是解题关键.7、D【解析】
①由直线y=-x+m与y轴交于负半轴,可得m<0;y=nx+4n(n≠0)的图象从左往右逐渐上升,可得n>0,即可判断结论①正确;②将x=-4代入y=nx+4n,求出y=0,即可判断结论②正确;③由整理即可判断结论③正确;④观察函数图象,可知当x>-1时,直线y=nx+4n在直线y=-x+m的上方,即nx+4n>-x+m,即可判断结论④正确.【详解】解:①∵直线y=-x+m与y轴交于负半轴,∴m<0;∵y=nx+4n(n≠0)的图象从左往右逐渐上升,∴n>0,故结论①正确;②将x=-4代入y=nx+4n,得y=-4n+4n=0,∴直线y=nx+4n一定经过点(-4,0).故结论②正确;③∵直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-1,∴当x=-1时,y=1+m=-1n+4n,∴m=1n-1.故结论③正确;④∵当x>-1时,直线y=nx+4n在直线y=-x+m的上方,∴当x>-1时,nx+4n>-x+m,故结论④正确.故选:D.【点睛】本题考查了一次函数图象上点的坐标特征、一次函数与一元一次不等式以及一次函数的图象,逐一分析四条结论的正误是解题的关键.8、D【解析】
将y=k(x-1)化为y=kx-k后分k>0和k<0两种情况分类讨论即可.【详解】y=k(x-1)=kx-k,
当k>0时,-k<0,此时图象呈上升趋势,且交与y轴负半轴,无符合选项;
当k<0时,-k>0,此时图象呈下降趋势,且交与y轴正半轴,D选项符合;
故选:D.【点睛】考查了一次函数的性质,解题的关键是能够分类讨论.9、A【解析】
众数:出现次数最多的数;中位数:从小到大排列,中间位置的数;【详解】众数:出现次数最多的数;年龄为15岁的人数最多,故众数为15;中位数:从小到大排列,中间位置的数;14,14,14,15,15,15,15,16,16,17;中间位置数字为15,15,所以中位数是(15+15)÷2=15故选A【点睛】本题考查了众数和中位数,属于基本题,熟练掌握相关概念是解答本题的关键.10、D【解析】
先提取公因式ax,再根据完全平方公式把x2﹣2x+1继续分解即可.【详解】原式=ax(x2﹣2x+1)=ax(x﹣1)2,故选D.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.因式分解必须分解到每个因式都不能再分解为止.11、A【解析】
根据正方形的面积可用对角线进行计算解答即可.【详解】解:因为正方形AECF的面积为50cm2,
所以AC==10cm,
因为菱形ABCD的面积==120,
所以BD==24cm,
所以菱形的边长==13cm.
故选:A.【点睛】此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.12、C【解析】
直接提取公因式将原式分解因式,进而将已知数值代入求出答案.【详解】,,.故选:.【点睛】此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.二、填空题(每题4分,共24分)13、1.【解析】利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=AD,EF=GH=BC,然后代入数据进行计算即可得解:∵BD⊥CD,BD=4,CD=3,∴.∵E、F、G、H分别是AB、AC、CD、BD的中点,∴EH=FG=AD,EF=GH=BC.∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC.又∵AD=6,∴四边形EFGH的周长=6+5=1.14、或【解析】
分两种情况讨论:(1)当点G在线段BD上时,如下图连接EG交CD于F;(2)当点G在线段BD的延长线上时,如下图连接EG交CD的延长线于F.根据两种情况分别画出图形,证得是等腰直角三角形,求出DF=EF=2,然后在直角三角形ECF中利用勾股定理即可求出CE的长.【详解】解:分两种情况讨论:(1)当点G在线段BD上时,如下图连接EG交CD于F∵ABCD是正方形∴CD=AD=4∵线段绕点顺时针旋转得到∴是等腰直角三角形,DE=DG=∴DF=EF=2∴CF=CD-DF=4-2=2∴CE=(2)当点G在线段BD的延长线上时,如下图连接EG交CD的延长线于F∵ABCD是正方形∴CD=AD=4∵线段绕点顺时针旋转得到∴是等腰直角三角形,DE=DG=∴DF=EF=2∴CF=CD+DF=4+2=6∴CE=综上所述,CE的长为或【点睛】本题考查了正方形的性质、旋转的性质及等腰直角三角形的性质,通过旋转证得是等腰直角三角形进行有关的计算是解题的关键.15、乙对角线互相平分的四边形是平行四边形【解析】
根据平行四边形的判定方法,即可解决问题.【详解】根据平行四边形的判定方法,我更喜欢乙的作法,他的作图依据是:对角线互相平分的四边形是平行四边形.故答案为:乙;对角线互相平分的四边形是平行四边形.【点睛】本题主要考查尺规作图-复杂作图,平行四边形的判定定理,掌握尺规作线段的中垂线以及平行四边形的判定定理,是解题的关键.16、答案不唯一【解析】
一次函数的图象经过第一、二、四象限,说明x的系数小于1,常数项大于1,据此写出一次函数.【详解】解:∵一次函数的图象经过第一、二、四象限,
∴函数x的系数小于1,常数项大于1.又∵常数项是3,
∴这个函数可以是y=-x+3等.故答案为:-1【点睛】本题考查了一次函数的系数与图象的关系,涉及到的知识点为:一次函数图象经过第一、二、四象限,说明x的系数小于1,常数项大于1.17、【解析】
利用总年龄除以总人数即可得解.【详解】解:由题意可得该班学生的平均年龄为.故答案为:14.4.【点睛】本题主要考查频数直方图,解此题的关键在于准确理解频数直方图中所表达的信息.18、四【解析】
根据一次函数图象的平移规律,可得答案.【详解】将一次函数y=5x﹣1的图象向上平移3个单位,得y=5x+2,直线y=5x+2经过一、二、三象限,不经过第四象限,故答案为:四。【点睛】此题考查一次函数图象与几何变换,解题关键在于利用一次函数图象平移的性质三、解答题(共78分)19、(1)见解析;(2)见解析;(3)(4,﹣2),(1,﹣3).【解析】
(1)分别画出A、B、C的对应点A1,B1,C1即可(2)分别画出A、B、C的对应点A2,B2,C2即可(3)根据B2,C2的位置写出坐标即可;【详解】解:(1)的△A1B1C1如图所示.(2)的△A2B2C2如图所示.(3)B2(4,﹣2),C2(1,﹣3),故答案为(4,﹣2),(1,﹣3).【点睛】此题考查作图-旋转变换和平移变换,掌握作图法则是解题关键20、70或80【解析】
要求服装的单价,可设服装的单价为x元,则每件服装的利润是(x-50)元,销售服装的件数是[800-20(x-60)]件,以此等量关系列出方程即可;【详解】解:设单价应定为x元,根据题意得:(x−50)[800−(x−60)÷5×100]=12000,(x−50)[800−20x+1200]=12000,整理得,x2−150x+5600=0,解得=70,=80;答:这种服装的单价应定为70元或80元.【点睛】本题主要考查了一元二次方程的应用,掌握一元二次方程的应用是解题的关键.21、(1)150°;(2)【解析】
(1)连接BD,首先证明△ABD是等边三角形,可得∠ADB=60°,DB=4,再利用勾股定理逆定理证明△BDC是直角三角形,进而可得答案;(2)过B作BE⊥AD,利用三角形函数计算出BE长,再利用△ABD的面积加上△BDC的面积可得四边形ABCD的面积.【详解】(1)连接BD,∵AB=AD,∠A=60°,∴△ABD是等边三角形,∴∠ADB=60°,DB=4,∵42+12=(4)2,∴DB2+CD2=BC2,∴∠BDC=90°,∴∠ADC=60°+90°=150°;(2)过B作BE⊥AD,∵∠A=60°,AB=4,∴BE=AB•sin60°=4×=2,∴四边形ABCD的面积为:AD•EB+DB•CD=×4×2+×4×1=4+2.22、(1)10,36°.补全条形图见解析;(2)5天,6天;(3)1.【解析】
(1)根据各部分所占的百分比等于1列式计算即可求出a,用360°乘以所占的百分比求出所对的圆心角的度数,求出8天的人数,补全条形统计图即可.(2)众数是在一组数据中,出现次数最多的数据.中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).(3)用总人数乘以“活动时间不少于7天”的百分比,计算即可得解.【详解】(1)a=1﹣(40%+20%+25%+5%)=1﹣90%=10%.用360°乘以所占的百分比求出所对的圆心角的度数:360°×10%=36°.240÷40=600,8天的人数,600×10%=60,故答案为10,36°.补全条形图如下:(2)∵参加社会实践活动5天的最多,∴众数是5天.∵600人中,按照参加社会实践活动的天数从少到多排列,第300人和301人都是6天,∴中位数是6天.(3)∵2000×(25%+10%+5%)=2000×40%=1.∴估计“活动时间不少于7天”的学生人数大约有1人.23、(1)∠A=30°;(1).【解析】
(1)根据折叠的性质:△BCE≌△BDE,BC=BD,当点D恰为AB的中点时,AB=1BD=1BC,又∠C=90°,故∠A=30°;当添加条件∠A=30°时,由折叠性质知:∠EBD=∠EBC=30°,又∠A=30°且ED⊥AB,可证:D为AB的中点;(1)在Rt△ADE中,根据∠A,ED的值,可将AE、AD的值求出,又D为AB的中点,可得AB的长度,在Rt△ABC中,根据AB、∠A的值,可将AC和BC的值求出,代入S△ABC=AC×BC进行求解即可.【详解】解:(1)添加条件是∠A=30°.证明:∵∠A=30°,∠C=90°,所以∠CBA=60°,∵C点折叠后与A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 会计员工管理制度
- 山东城市建设职业学院《动物解剖学A》2023-2024学年第二学期期末试卷
- 传媒市场管理制度
- 传统焊接管理制度
- 伯恩精密管理制度
- 低值耐久管理制度
- 体育制度管理制度
- 体育经费管理制度
- 西安航空学院《钢结构设计课程设计》2023-2024学年第二学期期末试卷
- 作业康复管理制度
- 《国有资产管理》课件
- 苗木采购管理规章制度
- 汽轮机高压抗燃油系统培训教材
- 水泥产品生产许可证实施细则
- 儿童意外伤害预防
- YY/T 1778.1-2021医疗应用中呼吸气体通路生物相容性评价第1部分:风险管理过程中的评价与试验
- GB/T 5314-2011粉末冶金用粉末取样方法
- 机电商品及其归类课件
- 化石吟主题知识讲座
- 产能置换相关政策梳理
- 园林绿化工程设计招标文件案例
评论
0/150
提交评论