版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省无锡惠山区七校联考八年级下册数学期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A. B.C. D.2.在分式中,的取值范围是()A. B. C. D.3.下列函数中,图像不经过第二象限的是()A. B. C. D.4.小明同学发现自己一本书的宽与长之比是黄金比约为0.1.已知这本书的长为20cm,则它的宽约为()A.12.36cm B.13.6cm C.32.386cm D.7.64cm5.已知反比例函数图像经过点(2,—3),则下列点中必在此函数图像上的是()A.(2,3) B.(1,6) C.(—1,6) D.(—2,—3)6.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数(单位:千克)及方差(单位:千克)如下表所示:甲乙丙丁242423202.11.921.9今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是(
)A.甲 B.乙 C.丙 D.丁7.如图,以正方形ABCD的边AB为一边向外作等边△ABE,则∠BED的度数为()A.55° B.45° C.40° D.42.5°8.下列函数中,是一次函数的是()A. B. C. D.9.若分式有意义,则实数x的取值范围是()A.x>5 B.x<5 C.x=5 D.x≠510.1的平方根是()A.1 B.-1 C.±1 D.011.下列说法不能判断是正方形的是()A.对角线互相垂直且相等的平行四边形 B.对角线互相垂直的矩形C.对角线相等的菱形 D.对角线互相垂直平分的四边形12.已知△ABC中,∠BAC=90°,用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形,其作法不正确的是(
)A.
B.C.
D.二、填空题(每题4分,共24分)13.若m=n-2+2-n+5,则mn=14.如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC的长为_____.15.如图,将长方形ABCD绕点A顺时针旋转到长方形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=125°,则∠α的大小是_______度.16.如图,在平面直角坐标系中,一次函数y=kx+b和函数y=4xx>0的图象交于A、B两点.利用函数图象直接写出不等式417.如图是由5个边长为1的正方形组成了“十”字型对称图形,则图中∠BAC的度数是_________.18.为了了解本校八年级学生的体能情况,随机抽查了其中30名学生,测试了1分钟仰卧起坐次数,并给制成如图所示的频数分布直方图,请根据图中信息,计算仰卧起坐次数在次的频率是______三、解答题(共78分)19.(8分)已知与成正比例,且时,.(1)求与的函数关系式;(2)当时,求的值;(3)将所得函数图象平移,使它过点(2,-1).求平移后直线的解析式.20.(8分)已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC.(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)若点P在线段AB上.如图2,连接AC,当P为AB的中点时,判断△ACE的形状,并说明理由.21.(8分)直线是同一平面内的一组平行线.(1)如图1.正方形的4个顶点都在这些平行线上,若四条直线中相邻两条之间的距离都是1,其中点,点分别在直线和上,求正方形的面积;(2)如图2,正方形的4个顶点分别在四条平行线上,若四条直线中相邻两条之间的距离依次为.①求证:;②设正方形的面积为,求证.22.(10分)如图,已知直线交轴于点,交轴于点,点,是直线上的一个动点.(1)求点的坐标,并求当时点的坐标;(2)如图,以为边在上方作正方形,请画出当正方形的另一顶点也落在直线上的图形,并求出此时点的坐标;(3)当点在上运动时,点是否也在某个函数图象上运动?若是请直接写出该函数的解析式;若不在,请说明理由.23.(10分)随着新能源汽车推广力度加大,产业快速发展,越来越多的消费者接受并购买新能源汽车。我市某品牌新能源汽车经销商1月至3月份统计,该品牌汽车1月份销售150辆,3月份销售216辆.(1)求该品牌新能源汽车销售量的月均增长率;(2)若该品牌新能源汽车的进价为52000元,售价为58000元,则该经销商1月至3月份共盈利多少元?24.(10分)如图,在中,对角线BD平分,过点A作,交CD的延长线于点E,过点E作,交BC延长线于点F.(1)求证:四边形ABCD是菱形;(2)若求EF的长.25.(12分)我们给出如下定义:把对角线互相垂直的四边形叫做“正交四边形”.如图1,在四边形ABCD中,AC⊥BD,四边形ABCD就是“正交四边形”.(1)下列四边形,一定是“正交四边形”的是______.①平行四边形②矩形③菱形④正方形(2)如图2,在“正交四边形”ABCD中,点E、F、G、H(3)小明说:“计算‘正交四边形’的面积可以仿照菱形的方法,面积是对角线之积的一半.”小明的说法正确吗?如果正确,请给出证明;如果错误,请给出反例.26.如图,在平面直角坐标系中,的三个顶点分别是、、.(1)画出关于点成中心对称的△;平移,若点的对应点的坐标为,画出平移后对应的△;(2)△和△关于某一点成中心对称,则对称中心的坐标为.
参考答案一、选择题(每题4分,共48分)1、C【解析】分析:设实际工作时每天绿化的面积为x万平方米,根据工作时间=工作总量÷工作效率结合提前30天完成任务,即可得出关于x的分式方程.详解:设实际工作时每天绿化的面积为x万平方米,则原来每天绿化的面积为万平方米,依题意得:,即.故选C.点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.2、A【解析】
根据分式有意义,分母不等于0列式计算即可得解.【详解】由题意得,x-1≠0,解得x≠1.故选A.【点睛】本题考查的是分式有意义的条件,解题的关键是掌握(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.3、B【解析】
根据一次函数的性质,逐个进行判断,即可得出结论.【详解】各选项分析得:A.k=3>0,b=5>0,图象经过第一、二、三象限;B.k=3>0,b=−5<0,图象经过第一、三、四象限;C.k=−3<0,b=5>0,图象经过第一、二、四象限;D.k=−3<0,b=−5<0,图象经过第二、三、四象限.故选B.【点睛】此题考查一次函数的性质,解题关键在于掌握一次函数的性质.4、A【解析】
根据黄金分割的比值约为0.1列式进行计算即可得解.【详解】解:∵书的宽与长之比为黄金比,书的长为20cm,∴书的宽约为20×0.1=12.36cm.故选:A.【点睛】本题考查了黄金比例的应用,掌握黄金比例的比值是解题的关键.5、C【解析】
先根据反比例函数经过点(2,-3)求出k的值,再对各选项进行逐一分析即可.【详解】∵反比例函数经过点(2,-3),∴k=2×-3=-1.A、∵2×3=1≠-1,∴此点不在函数图象上,故本选项错误;B、∵1×1=1≠-1,∴此点不在函数图象上,故本选项错误;C、∵(-1)×1=-1,∴此点在函数图象上,故本选项正确;D、∵(-2)×(-3)=1≠-1,∴此点不在函数图象上,故本选项错误.故选C.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.6、B【解析】
先比较平均数得到甲组和乙组产量较好,然后比较方差得到乙组的状态稳定.【详解】因为甲组、乙组的平均数丙组比丁组大,而乙组的方差比甲组的小,所以乙组的产量比较稳定,所以乙组的产量既高又稳定,故选B.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.7、B【解析】
根据等边三角形,可证△AED为等腰三角形,从而可求∠AED,也就可得∠BED的度数.【详解】解:∵等边△ABE∴∠EAB=∠BED=60°,AE=AD∵四边形ABCD是正方形∴∠BAD=90°,AB=AD∴∠EAD=150°,AE=AD∴∠AED=∠ADE=15°∴∠BED=60°-15°=45°故选:B.【点睛】此题主要考查了等边三角形的性质.即每个角为60度.8、D【解析】
根据一次函数的定义进行判断即可.【详解】A.该函数属于正比例函数,故本选项错误;B.该函数属于反比例比例函数,故本选项错误;C.该函数属于二次函数,故本选项错误;D.该函数属于一次函数,故本选项正确;故选:D.【点睛】此题考查一次函数,难度不大9、D【解析】
根据分式有意义的条件:分母≠0,即可求出结论.【详解】解:若分式有意义,则x-1≠0,解得:x≠1.故选:D.【点睛】此题主要考查了分式有意义的条件,正确把握分式有意义的条件:分母≠0是解题关键.10、C【解析】
根据平方根的定义,求数a的平方根,也就是求一个数x,使得x=a,则x就是a的平方根,由此即可解决问题.【详解】∵(±1)=1,∴1的平方根是±1.故选:C.【点睛】此题考查平方根,解题关键在于掌握其定义11、D【解析】
正方形是特殊的矩形和菱形,要判断是正方形,选项中必须要有1个矩形的特殊条件和1个菱形的特殊条件.【详解】A中,对角线相互垂直的平行四边形可判断为菱形,又有对角线相等,可得正方形;B中对角线相互垂直的矩形,可得正方形;C中对角线相等的菱形,可得正方形;D中,对角线相互垂直平分,仅可推导出菱形,不正确故选:D【点睛】本题考查证正方形的条件,常见思路为:(1)先证四边形是平行四边形;(2)再添加一个菱形特有的条件;(3)再添加一个矩形特有的条件12、D【解析】分析:根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜边上的垂线,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;即可作出判断.详解:A、在角∠BAC内作作∠CAD=∠B,交BC于点D,根据余角的定义及等量代换得出∠B+∠BAD=90°,进而得出AD⊥BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;A不符合题意;B、以点A为圆心,略小于AB的长为半径,画弧,交线段BC两点,再分别以这两点为圆心,大于两交点间的距离为半径画弧,两弧相交于一点,过这一点与A点作直线,该直线是BC的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;B不符合题意;C、以AB为直径作圆,该圆交BC于点D,根据圆周角定理,过AD两点作直线该直线垂直于BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;C不符合题意;D、以点B为圆心BA的长为半径画弧,交BC于点E,再以E点为圆心,AB的长为半径画弧,在BC的另一侧交前弧于一点,过这一点及A点作直线,该直线不一定是BE的垂线;从而就不能保证两个小三角形相似;D符合题意;故选D.点睛:此题主要考查了相似变换以及相似三角形的判定,正确掌握相似三角形的判定方法是解题关键.二、填空题(每题4分,共24分)13、1.【解析】
直接利用二次根式有意义的条件得出m,n的值进而得出答案.【详解】∵m=n-2+2-n∴n=2,则m=5,故mn=1.故答案为:1.【点睛】此题主要考查了二次根式有意义的条件,正确得出m,n的值是解题关键.14、【解析】
作AM⊥BC于E,由角平分线的性质得出,设AC=2x,则BC=3x,由线段垂直平分线得出MN⊥BC,BN=CN=x,得出MN∥AE,得出,NE=x,BE=BN+EN=x,CE=CN−EN=x,再由勾股定理得出方程,解方程即可得出结果.【详解】解:作AM⊥BC于E,如图所示:∵CD平分∠ACB,∴,设AC=2x,则BC=3x,∵MN是BC的垂直平分线,∴MN⊥BC,BN=CN=x,∴MN∥AE,∴,∴NE=x,∴BE=BN+EN=x,CE=CN−EN=x,由勾股定理得:AE2=AB2−BE2=AC2−CE2,即52−(x)2=(2x)2−(x)2,解得:x=,∴AC=2x=;故答案为.【点睛】本题考查了线段垂直平分线的性质、角平分线的性质、平行线分线段成比例定理、勾股定理等知识;熟练掌握线段垂直平分线的性质和角平分线的性质,由勾股定理得出方程是解题的关键.15、35.【解析】
利用四边形内角和得到∠BAD’,从而得到∠α【详解】如图,由矩形性质得到∠BAD’+∠α=90°;因为∠2=∠1=125°,所以∠BAD’=180°-∠2=55°,所以∠α=90°-55°=35°,故填35【点睛】本题主要考查矩形性质和四边形内角和性质等知识点,本题关键在于找到∠2与∠BAD互补16、1<x<4【解析】
不等式4x<kx+b(x>0)的解集实际上是反比例函数值小于一次函数值的自变量【详解】解:不等式4x<kx+b(x>0)的解集实际上是反比例函数值小于一次函数值的自变量x的取值范围,根据图象得:1<x<1.
故答案为:1<x<【点睛】本题考查一次函数、反比例函数的图象和性质,理清不等式的解集与两个函数的交点坐标之间的关系是解决问题的关键.17、45.【解析】
连接BC,通过计算可得AB=BC,再利用勾股定理逆定理证明△ABC是等腰直角三角形,从而得出结果.【详解】解:连接BC,因为每个小正方形的边长都是1,由勾股定理可得,,,∴AB=BC,,∴∠ABC=90°.∴∠BAC=∠BCA=45°.故答案为45°.【点睛】本题考查了勾股定理及其逆定理、等腰直角三角形的判定和性质,解题的关键是连接BC,构造等腰直角三角形,而通过作辅助线构造特殊三角形也是解决角度问题的常见思路和方法.18、0.4【解析】
根据计算仰卧起坐次数在次的频率.【详解】由图可知:仰卧起坐次数在次的频率.故答案为:.【点睛】此题考查了频率、频数的关系:.三、解答题(共78分)19、(1)y=2x+3;(2)2;(3)y=2x-5.【解析】
(1)根据题意设y与x的关系式为y-3=kx(k≠0);然后利用待定系数法求一次函数解析式;(2)把x=-代入一次函数解析式可求得(3)设平移后直线的解析式为y=2x+m,把点(2,-1)代入求出m的值,即可求出平移后直线的解析式【详解】(1)设y-3=kx,则2k=7-3,解得:k=2,y与x的函数关系式:y=2x+3;(2)当x=-时,y=2(3)设平移后直线的解析式为:y=2x+m,过点(2,﹣1)所以,4+m=-1,得:m=-5,解析式为:y=2x-520、(1)证明见解析;(2)△ACE是直角三角形,理由见解析.【解析】分析:(1)根据四边形ABCD和四边形BPEF是正方形,证明△APE≌△CFE;(2)分别判断△ABC,△APE是等腰直角三角形得∠CAE=90°.详解:(1)∵四边形ABCD和四边形BPEF是正方形,∴AB=BC,BP=BF,∴AP=CF,在△APE和△CFE中,AP=CF,∠P=∠F,PE=EF,∴△APE≌△CFE,∴EA=EC;(2)∵P为AB的中点,∴PA=PB,又PB=PE,∴PA=PE,∴∠PAE=45°,又∠DAC=45°,∴∠CAE=90°,即△ACE是直角三角形.点睛:本题考查了正方形的性质,正方形的四边相等且平行,四角相等,每一条对角线平分一组对角,注意到等腰直角的底角等于45°.21、(1)9或5;(2)①见解析,②见解析【解析】
(1)分两种情况:①如图1-1,得出正方形ABCD的边长为2,求出正方形ABCD的面积为9;②如图1-2,过点B作EF⊥l1于E,交l4于F,则EF⊥l4,证明△ABE≌△BCF(AAS),得出AE=BF=2由勾股定理求出AB=,即可得出答案;(2)①过点B作EF⊥l1于E,交l4于F,作DM⊥l4于M,证明△ABE≌△BCF(AAS),得出AE=BF,同理△CDM≌△BCF(AAS),得出△ABE≌△CDM(AAS),得出BE=DM即可;②由①得出AE=BF=h2+h2=h2+h1,得出正方形ABCD的面积S=AB2=AE2+BE2,即可得到答案.【详解】解:(1)①如图,当点分别在上时,面积为:;②如图,当点分别在上时,过点B作EF⊥l1于E,交l4于F,则EF⊥l4,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∴∠ABE+∠CBF=180°-90°=90°,∵∠CBF+∠BCF=90°,∴∠ABE=∠BCF,在△ABE和△BCF中,∴△ABE≌△BCF(AAS),∴AE=BF=2,∴AB=,∴正方形ABCD的面积=AB2=5;综上所述,正方形ABCD的面积为9或5;(2)①证明:过点B作EF⊥l1于E,交l4于F,作DM⊥l4于M,如图所示:则EF⊥l4,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∴∠ABE+∠CBF=180°-90°=90°,∵∠CBF+∠BCF=90°,∴∠ABE=∠BCF,在△ABE和△BCF中,,
∴△ABE≌△BCF(AAS),∴AE=BF,同理△CDM≌△BCF(AAS),∴△ABE≌△CDM(AAS),∴BE=DM,即h1=h2.②解:由①得:AE=BF=h2+h2=h2+h1,∵正方形ABCD的面积:S=AB2=AE2+BE2,∴S=(h2+h1)2+h12=2h12+2h1h2+h3.【点睛】本题考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识;熟练掌握正方形的性质,证明三角形全等是解题的关键.22、(1),D(1.2,1.6)或(2.8,-1.6);(2)或,见解析;(3)点F在直线上运动,见解析.【解析】
(1)利用待定系数法求出A,B两点坐标,再构建方程即可解决问题.
(2)分两种情形:①如图1,当点F在直线上时,过点D作DG⊥x轴于点G,过点F作FH⊥x轴于点H,②如图2,当点E在直线上时,过点D作DG⊥x轴于点G,过点E作EH⊥x轴于点H,过点D作DM⊥EH于点M,分别求解即可解决问题.
(3)由(2)①可知:点F的坐标F(2m-7,m+3),令x=2m-7,y=m+3,消去m即可得到.【详解】解:(1)令,则,解得,,,易得,由得,,解得,由解得或2.8,∴D(1.2,1.6)或(2.8,-1.6).(2)①如图1,当点在直线上时,过点作轴于点,过点作轴于点,图1设,易证,,则,,,得,;②如图2,当点在直线上时,过点作轴于点,过点作轴于点,图2过点作于点,同①可得,,则,,,得,;(3)设D(m,-2m+4),由(2)①可知:F(2m-7,m+3),
令x=2m-7,y=m+3,消去m得到:点在直线上运动.故答案为:(1),D(1.2,1.6)或(2.8,-1.6);(2)或,见解析;(3)点F在直线上运动,见解析.【点睛】本题属于一次函数综合题,考查正方形的性质,三角形的面积,全等三角形的判定和性质,待定系数法等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.23、(1)该品牌新能源汽车销售量的月均增长率为;(2)盈利3276000元.【解析】
(1)设该品牌电动自行车销售量的月均增长率为x.等量关系为:1月份的销售量×(1+增长率)2=3月份的销售量,把相关数值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年人力资源担保用工协议样式版B版
- 2024年专属定制人力资源服务合作合同一
- (2024版)船舶买卖合同(含2024版规定)
- 2024年专业托管清洁服务协议样本版
- 江南大学《蛋白质纯化技术(含实验)》2022-2023学年第一学期期末试卷
- 2024年商铺合作经营标准合同书版
- 佳木斯大学《基本乐理1》2021-2022学年第一学期期末试卷
- 暨南大学《人寿与健康保险》2021-2022学年第一学期期末试卷
- 暨南大学《宏观经济学》2023-2024学年第一学期期末试卷
- 二零二四年度商务产业园委托运营协议之绩效评估标准3篇
- 学校矛盾纠纷排查化解工作方案(3篇)
- 6人小品《没有学习的人不伤心》台词完整版
- 《注册建造师执业工程规模标准》
- 《王戎不取道旁李》课件完美版
- “四风”问题查摆整改台账
- 口腔科诊断证明书模板
- 实验室间比对方案
- 面神经炎(面瘫病)病程模板
- 主斜井维修、刷扩安全技术措施
- 国学知识文库集部别集·楼居杂著野航诗稿野航文稿野航附录
- 公共政策执行的几种理论模型(最新整理)
评论
0/150
提交评论