




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省周口市第一中学2024届数学八年级下册期末教学质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.下列计算错误的是()A.÷=3 B.=5C.2+=2 D.2•=22.如图,在平行四边形ABCD中,AC、BD相交于点O,点E是AB的中点.若OE=3cm,则AD的长是()A.3cm B.6cm C.9cm D.12cm3.三角形两边长分别为2和4,第三边是方程x2-6x+8=0的解,则这个三角形的周长是().A.8 B.8或10 C.10 D.8和104.对于一组统计数据1,1,6,5,1.下列说法错误的是()A.众数是1 B.平均数是4 C.方差是1.6 D.中位数是65.如图,在△ABC中,∠B=45°,∠ACB=60°,AB=16,AD⊥BC,垂足为D,∠ACB的平分线交AD于点E,则AE的长为()A. B.4 C. D.66.已知一次函数y=kx+b﹣x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为()A., B., C., D.,7.中国传统扇文化有着深厚的底蕴,下列扇面图形是中心对称图形的是()A. B. C. D.8.二次根式的值是()A.﹣3 B.3或﹣3 C.9 D.39.反比例函数y=在第一象限的图象如图所示,则k的值可能是()A.1 B.2 C.3 D.410.下列不能反映一组数据集中趋势的是()A.众数 B.中位数 C.方差 D.平均数11.若n是实数,且n>0,则一次函数y=﹣nx+n的图象经过的象限是()A.一、二、三 B.一、三、四 C.一、二、四 D.二、三、四12.在平面直角坐标系中,函数的图象经过()A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限二、填空题(每题4分,共24分)13.在关系式V=31-2t中,V随着t的变化而变化,其中自变量是_____,因变量是_____,当t=_____时,V=1.14.如图,已知矩形ABCD中,对角线AC、BD相交于O,AE⊥BD于E,若AB=6,AD=8,则AE=______15.在直角坐标系中,直线与y轴交于点,按如图方式作正方形、、…,、、…在直线上,点、、…,在x轴上,图中阴影部分三角形的面积从左到右依次记为、、、..,则的值为________.16.不等式组的解集为______.17.如图,在中,已知,,分别为,,的中点,且,则图中阴影部分的面积等于__.18.等边三角形的边长为6,则它的高是________三、解答题(共78分)19.(8分)已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为、,点D是OA的中点,点P在BC边上运动,当是等腰三角形时,点Р的坐标为_______________.20.(8分)如图,AD是△ABC的高,CE是△ABC的中线.(1)若AD=12,BD=16,求DE;(2)已知点F是中线CE的中点,连接DF,若∠AEC=57°,∠DFE=90°,求∠BCE的度数.21.(8分)如图如图1,四边形ABCD和四边形BCMD都是菱形,(1)求证:∠M=60°(2)如图2,点E在边AD上,点F在边CM上,连接EF交CD于点H,若AE=MF,求证:EH=HF;(3)如图3,在第(2)小题的条件下,连接BH,若EF⊥CM,AB=3,求BH的长22.(10分)如图,直线分别与轴,轴交于两点,与直线交于点.(1)点的坐标为__________,点的坐标为__________(2)在线段上有一点,过点作轴的平行线交直线于点,设点的横坐标为,当为何值时,四边形是平行四边形.23.(10分)将两张完全相同的矩形纸片ABCD、FBED按如图方式放置,BD为重合的对角线.重叠部分为四边形DHBG,(1)试判断四边形DHBG为何种特殊的四边形,并说明理由;(2)若AB=8,AD=4,求四边形DHBG的面积.24.(10分)如图,在中,BE∥DF,且分别交对角线AC于点E,F,连接ED,BF.(1)求证:AE=CF(2)若AB=9,AC=16,AE=4,BF=,求四边形ABCD的面积.25.(12分)如图,已知直线l1的解析式为y1=-x+b,直线l2的解析式为:y2=kx+4,l1与x轴交于点B,l1与l2交于点A(-1,2).(1)求k,b的值;(2)求三角形ABC的面积.26.如图,在△ABC中,D、E分别是边AB、AC的中点,点F是BC延长线上一点,且CF=12BC,连结CD、EF,那么CD与EF
参考答案一、选择题(每题4分,共48分)1、C【解析】
根据二次根式的运算法则及二次根式的性质逐一计算即可判断.【详解】解:A、÷=3÷=3,此选项正确;B、=5,此选项正确;C、2、不能合并,此选项错误,符合题意;D、2•=2,此选项正确;故选C.【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则及二次根式的性质.2、B【解析】
根据平行四边形的性质,可得出点O平分BD,则OE是三角形ABD的中位线,则AD=2OE,问题得解.【详解】解:∵四边形ABCD为平行四边形,
∴BO=DO,
∵点E是AB的中点,
∴OE为△ABD的中位线,
∴AD=2OE,
∵OE=3cm,
∴AD=6cm.
故选B.【点睛】本题考查了平行四边形的性质、三角形的中位线定理,是基础知识比较简单,熟记平行四边形的各种性质是解题关键.3、C【解析】
解:∵,或,三角形的第三边为4或2,∵2+2=4不符合题意,,三角形的第三边为4,这个三角形的周长为故选C【点睛】此题做出来以后还要进行检验,三角形的三边关系满足,所以不符合此条件,应该舍去4、D【解析】
根据中位数、众数、方差等的概念计算即可得解.【详解】A、这组数据中1都出现了1次,出现的次数最多,所以这组数据的众数为1,此选项正确;B、由平均数公式求得这组数据的平均数为4,故此选项正确;C、S2=[(1﹣4)2+(1﹣4)2+(6﹣4)2+(5﹣4)2+(1﹣4)2]=1.6,故此选项正确;D、将这组数据按从大到校的顺序排列,第1个数是1,故中位数为1,故此选项错误;故选D.考点:1.众数;2.平均数;1.方差;4.中位数.5、C【解析】
在Rt△ABD中,利用等腰直角三角形的性质列方程求解可求出AD和BD的长度,在Rt△ADC中;根据直角三角形中30度角所对的直角边是斜边的一半的性质可列方程解出CD,同理可得DE的长度,再利用AE=AD−DE即可求出AE的长度.【详解】解:∵AD⊥BC,∴∠ADB=∠ADC=90°,即△ABD、△ADC和△CDE为直角三角形,在Rt△ABD中,∵∠ADB=90°,AB=16,∠B=45°,∴∠B=∠BAD=45°,则AD=BD,设AD=BD=x,由勾股定理得:,解得:,即AD=BD=,在Rt△ADC中,∵∠ADC=90°,∠ACD=60°,AD=,∴∠CAD=30°,则,设CD=x,则AC=2x,由勾股定理得:,解得:,即CD,∵CE平分∠ACD,∴∠ECD=30°,在Rt△CDE中,同理得:DE,∴AE=AD﹣DE=﹣=,故选:C.【点睛】本题主要考查了勾股定理、等腰直角三角形的性质和直角三角形中30度角所对的直角边是斜边的一半,根据勾股定理构造方程是解题的关键.6、A【解析】试题解析:一次函数y=kx+b-x即为y=(k-1)x+b,∵函数值y随x的增大而增大,∴k-1>1,解得k>1;∵图象与x轴的正半轴相交,∴图象与y轴的负半轴相交,∴b<1.故选A.7、C【解析】
根据中心对称图形的概念进行分析.【详解】A、不是中心对称图形,故此选项错误;
B、不是中心对称图形,故此选项错误;
C、是中心对称图形,故此选项正确;
D、不是中心对称图形,故此选项错误;
故选:C.【点睛】考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.8、D【解析】
本题考查二次根式的化简,.【详解】.故选D.【点睛】本题考查了根据二次根式的意义化简.二次根式化简规律:当a≥0时,=a;当a≤0时,=﹣a.9、C【解析】如图,当x=2时,y=,∵1<y<2,∴1<<2,解得2<k<4,所以k=1.故选C.10、C【解析】试题分析:平均数、众数、中位数是描述一组数据集中趋势的特征量,极差、方差是衡量一组数据偏离其平均数的大小(即波动大小)的特征数.故答案选C.考点:统计量的选择.11、C【解析】
根据题意,在一次函数y=﹣nx+n中,﹣n<0,n>0,结合函数图象的性质可得答案.【详解】解:根据题意,在一次函数y=﹣nx+n中,﹣n<0,n>0,则函数的图象过一、二、四象限,故选:C.【点睛】本题考查一次函数的图象的性质,应该识记一次函数y=kx+b在k、b符号不同情况下所在的象限.12、D【解析】
由k、b的正负,利用一次函数图象与系数的关系即可得出函数y=-2x-3的图象经过第二、三、四象限,此题得解.【详解】∵k=-2<0,b=-3<0,∴函数y=-2x-3的图象经过第二、三、四象限.故选D.【点睛】本题考查了一次函数图象与系数的关系,牢记“k<0,b<0⇔y=kx+b的图象在二、三、四象限”是解题的关键.二、填空题(每题4分,共24分)13、tV15【解析】∵在关系式V=31-2t中,V随着t的变化而变化,∴在关系式V=31-2t中,自变量是;因变量是;在V=31-2t中,由可得:,解得:,∴当时,.故答案为(1);(2);(3)15.14、4.8.【解析】
矩形各内角为直角,在直角△ABD中,已知AB、AD,根据勾股定理即可求BD的值,根据面积法即可计算AE的长.【详解】矩形各内角为直角,∴△ABD为直角三角形在直角△ABD中,AB=6,AD=8则BD==10,∵△ABD的面积S=AB⋅AD=BD⋅AE,∴AE==4.8.故答案为4.8.【点睛】此题考查矩形的性质,解题关键在于运用勾股定理进行计算15、【解析】
根据=,=,找出规律从而得解.【详解】解:∵直线,当x=0时,y=1,当y=0时,x=﹣1,∴OA1=1,OD=1,∴∠ODA1=45°,∴∠A2A1B1=45°,∴A2B1=A1B1=1,∴=,∵A2B1=A1B1=1,∴A2C1=2=,∴=,同理得:A3C2=4=,…,=,∴=,故答案为.16、1<x≤1【解析】解不等式x﹣3(x﹣2)<1,得:x>1,解不等式,得:x≤1,所以不等式组解集为:1<x≤1,故答案为1<x≤1.17、2【解析】
E是AD的中点S△BDE=S△ABD,S△CDE=S△ACDS△BCE=S△ABC=4;F为CE中点S△BEF=S△BCE=.【详解】解:∵E是AD的中点,∴S△BDE=S△ABD,S△CDE=S△ACD,∴S△BDE+S△CDE=S△ABC=(cm2),即S△BCE=4(cm2).∵F为CE中点,∴S△BEF=S△BCE=(cm2).故答案为2.【点睛】本题主要考查了三角形中线的性质,熟知三角形的中线将三角形分成面积相等的两部分是解题关键.18、【解析】
根据等边三角形的性质:三线合一,利用勾股定理可求解高.【详解】由题意得底边的一半是3,再根据勾股定理,得它的高为=3,故答案为3.【点睛】本题考查的是等边三角形的性质,勾股定理,解答本题的关键是掌握好等腰三角形的三线合一:底边上的高、中线,顶角平分线重合.三、解答题(共78分)19、,,,;【解析】
题中没指明△ODP的腰长与底分别是哪个边,故应该分情况进行分析,从而求得点P的坐标.【详解】(1)OD是等腰三角形的底边时,此时P(2.5,4);(2)OD是等腰三角形的一条腰时:①若点O是顶角顶点时,P点就是以点O为圆心,以5为半径的弧与CB的交点,在直角∆OPC中,CP===3,则P的坐标是(3,4);②若D是顶角顶点时,P点就是以点D为圆心,以5为半径的弧与CB的交点,过D作DM⊥BC于点M,在直角∆PDM中,PM==3,当P在M的左边时,CP=5-3=2,则P的坐标是(2,4);当P在M的右侧时,CP=5+3=8,则P的坐标是(8,4);故P的坐标为:(2.5,4);(3,4);(2,4)或(8,4).故答案为:(2.5,4);(3,4);(2,4)或(8,4)【点睛】本题考查了等腰三角形的性质和勾股定理的运用解答,注意正确地进行分类,考虑到所有可能的情况是解题的关键.20、(1)DE=10;(2)∠BCE=19°.【解析】
(1)根据勾股定理和直角三角形斜边上的中线等于斜边的一半即可得到结论;(2)由DE=DC得到∠DEC=∠DCE,由DE=BE得到∠B=∠EDB,由此根据外角的性质来求∠BCE的度数.【详解】(1)∵AD⊥BC,∴∠ADB=90°,∴AB==20,∵CE是中线,∴DE是斜边AB上的中线,∴DE=AB=10;(2)∵DF⊥CF,F是CF的中点,∴DE=DC,∴∠DEC=∠DCE,∴∠EDB=∠DEC+∠DCE=2∠BCE,∵DE=BE,∴∠B=∠EDB,∴∠B=2∠BCE,∴∠AEC=3∠BCE=57°,则∠BCE=19°.【点睛】本题考查了勾股定理,也考查了直角三角形斜边上的中线性质,熟练掌握勾股定理是解题的关键.21、(1)证明见解析(2)证明见解析(3)7【解析】
(1)利用菱形的四条边相等,可证CD=DM=CM=AD,就可得到△CDM是等边三角形,再利用等边三角形的三个角都是60°,就可求出∠M的度数;(2)过点E作EG∥CM交CD的延长线于点G,可得到∠G=∠HCF,先证明△EDG是等边三角形,结合已知条件证明EG=CF,利用AAS证明△EGH≌△FCH,再根据全等三角形的对应边相等,可证得结论;(3)设BD,EF交于点N,根据前面的证明可知BD=CD=AB=3,∠M=∠CDM=60°,DE=CF,再利用垂直的定义及三角形内角和定理可求出∠HED,∠EHD的度数,从而利用等腰三角形的判定和性质,可证得ED=DH=CF,可推出CD=3DH,就可求出DH的长,然后利用解直角三角形分别求出BN,NH的长,再利用勾股定理就可求出BH的长.【详解】(1)证明:∵四边形ABCD和四边形BCMD都是菱形,∴BC=CD=AD,BC=DM=CM∴CD=DM=CM=AD,∴△CDM是等边三角形,∴∠M=60°。(2)解:如图2,过点E作EG∥CM交CD的延长线于点G,∴∠G=∠HCF=60°,∠GED=∠M=60°,∴∠G=∠GED=∠EDG=60°,∴△EDG是等边三角形∴EG=DE;∵AD=CM,AE=MF,∴DE=CF,∴EG=CF;在△EGH和△FCH中,∠G=∠HCF∴△EGH≌△FCH(AAS)∴EH=FH.(3)解:如图3,设BD,EF交于点N,由(1)(2)的证明过程可知BD=CD=AB=3,∠M=∠CDM=60°,DE=CF,∵EF⊥CM,∴∠EFM=90°,∴∠HED=90°-60°=30°,∠CDM=∠HED+∠EHD=60°∴∠EHD=60°-30°=30°=∠HED=∠CHF∴ED=DH=CF,在R△CHF中,∠CHF=30°∴CH=2CH=2DH,∴CD=CH+DH=3DH=3解之:DH=CF=1∵菱形CBDM,EF⊥CM∴BD∥CM∴EF⊥BD;∴∠DNH=∠BNH=90°,在Rt△DHN中,∠DHN=30°,DH=1∴DN=DHsin∠30°=12,NH=DHcos30°=32∴BN=BD-DN=3-12=5在Rt△BHN中,BH=BN【点睛】本题是四边形综合题目,考查了菱形的性质、等边三角形的判定与性质、相似三角形的判定与性质、平行线的性质、勾股定理、含30°角的直角三角形的性质等知识;本题综合性强,熟练掌握等边三角形的判定与性质是解题的关键.22、(1)(8,0),(0,4);(2)当m为时,四边形OBEF是平行四边形.【解析】
(1)由点C的坐标利用待定系数法即可求出直线的解析式,再分别令直线的解析式中x=0、y=0求出对应的y、x值,即可得出点A、B的坐标;(2)由点C的坐标利用待定系数法即可求出直线的解析式,结合点E的横坐标即可得出点E、F的坐标,再根据平行四边形的性质即可得出关于m的一元一次方程,解方程即可得出结论;【详解】解:(1)将点C(4,2)代入y=−x+b中,得:2=−2+b,解得:b=4,∴直线为y=−x+4.令y=−x+4中x=0,则y=4,∴B(0,4);令y=−x+4中y=0,则x=8,∴A(8,0).故答案为:(8,0)(0,4)(2)将C(4,2)分别代入y=-x+b,y=kx-1,得b=4,k=2.∴直线l1的解析式为y=-x+4,直线l2的解析式为y=2x-1.∵点E的横坐标为m,∴点E的坐标为(m,-m+4),点F的坐标为(m,2m-1).∴EF=-m+4-(2m-1)=-m+2.∵四边形OBEF是平行四边形,∴EF=OB,即-m+2=4.解得m=.∴当m为时,四边形OBEF是平行四边形.【点睛】此题考查一次函数综合题,解题关键在于把已知点代入解析式23、(1)四边形DHBG是菱形,理由见解析;(2)1.【解析】
(1)由四边形ABCD、FBED是完全相同的矩形,可得出△DAB≌△DEB(SAS),进而可得出∠ABD=∠EBD,根据矩形的性质可得AB∥CD、DF∥BE,即四边形DHBG是平行四边形,再根据平行线的性质结合∠ABD=∠EBD,即可得出∠HDB=∠HBD,由等角对等边可得出DH=BH,由此即可证出▱DHBG是菱形;(2)设DH=BH=x,则AH=8-x,在Rt△ADH中,利用勾股定理即可得出关于x的一元一次方程,解之即可得出x的值,再根据菱形的面积公式即可求出菱形DHBG的面积.【详解】解:四边形是菱形.理由如下:∵四边形、是完全相同的矩形,∴,,.在和中,,∴,∴.∵,,∴四边形是平行四边形,,∴,∴,∴是菱形.由,设,则,在中,,即,解得:,即,∴菱形的面积为.【点睛】本题考查了菱形的判定与性质、矩形的性质、全等三角形的判定与性质以及勾股定理,解题的关键是:(1)利用等角对等边找出DH=BH;(2)利用勾股定理求出菱形的边长.24、(1)见解析;(2)【解析】
(1)首先由平行四边形的性质可得AB=CD,AB∥CD,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 十五五期间林下经济发展规划
- DB1311T 106-2016 茄子嫁接育苗技术规程
- 五年级数学上册(人教版)习题课件-第6课时 积的近似数
- 加油站事故现场处置方案
- 医疗废物管理领导小组职责
- 华师大版七年级数学上册期末考试卷(含答案)-
- 厨房、卫生间涂膜防水层工程检验批质量验收记录
- 2025至2030年中国高层建筑结构用钢行业投资前景及策略咨询报告
- 熄灭指间烟守护健康路第38个“世界无烟日”主题教育班会-高中主题班会课件
- Unit6SectionBProjectReading课件人教版英语七年级下册
- 2025照明系统工程合同样本
- 2025年浙江高中学业水平考试生物试题真题汇编(含答案)
- 2025年计算机Photoshop面试试题及答案
- 真核生物基因表达的调控课件
- 2025年入团考试试题及答案完美呈现
- 中国工业软件行业发展分析及发展趋势与投资前景预测研究报告2025-2028版
- 金融监管沙盒模拟测试
- 江苏省苏州市昆山市2023-2024学年六年级下学期期末英语试卷
- 2024年《企业战略管理》期末考试复习题库(含答案)
- DSP课程设计--基于IIR的语音信号滤波
- 《水工程技术经济》PPT课件.ppt
评论
0/150
提交评论