版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年河南省新乡市名校八年级下册数学期末监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.下列计算正确的是()。A. B. C. D.2.若实数a、b满足ab<0,则一次函数y=ax+b的图象可能是()A. B.C. D.3.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为()A.6 B.8 C.16 D.554.某商品原售价289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x,则下面所列方程中正确的是()A.289(1―2x)=256B.256(1+x)2=289C.289(1―x)2=256D.289―289(1―x)―289(1―x)2=2565.如图,中,,,将绕点逆时针旋转得到,若点的对应点落在边上,则旋转角为()A. B. C. D.6.若化简的结果为,则的取值范围是()A.一切实数 B. C. D.7.下列几组数中,不能作为直角三角形三边长度的是()A.3,4,5 B.5,7,8 C.8,15,17 D.1,8.定义新运算“⊕”如下:当a>b时,a⊕b=ab+b;当a<b时,a⊕b=ab﹣b,若3⊕(x+2)>0,则x的取值范围是()A.﹣1<x<1或x<﹣2 B.x<﹣2或1<x<2C.﹣2<x<1或x>1 D.x<﹣2或x>29.在△ABC中,若AB=8,BC=15,AC=17,则AC边上的中线BD的长为()A.8 B.8.5 C.9 D.9.510.下列条件中,不能判定四边形是平行四边形的是()A., B.,C., D.,二、填空题(每小题3分,共24分)11.在一次芭蕾舞比赛中有甲、乙两个团的女演员参加表演,她们的平均身高相同,若S甲2=1.5,S乙2=2.5,则_____(填“甲”或“乙”)表演团的身高更整齐.12.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为40,则OH的长等于_____.13.已知一次函数y=﹣2x+5,若﹣1≤x≤2,则y的最小值是_____.14.如图,是将绕点顺时针旋转得到的.若点,,在同一条直线上,则的度数是______.15.已知函数y1=k1x+b1与函数y2=k2x+b2的图象如图所示,则不等式k1x+b1<k2x+b2的解集是.16.如图,直线AB的解析式为y=x+4,与y轴交于点A,与x轴交于点B,点P为线段AB上的一个动点,作PE⊥y轴于点E,PF⊥x轴于点F,连接EF,则线段EF的最小值为_____.17.方程的解是.18.计算:______.三、解答题(共66分)19.(10分)已知:如图,四边形ABCD是平行四边形,AE∥CF,且分别交对角线BD于点E,F.(1)求证:△AEB≌△CFD;(2)连接AF,CE,若∠AFE=∠CFE,求证:四边形AFCE是菱形.20.(6分)如图,平行四边形ABCD中,点E为AB边上一点,请你用无刻度的直尺,在CD边上画出点F,使四边形AECF为平行四边形,并说明理由.21.(6分)如图,小明在研究性学习活动中,对自己家所在的小区进行调查后发现,小区汽车入口宽AB为3.3m,在入口的一侧安装了停止杆CD,其中AE为支架.当停止杆仰起并与地面成60°角时,停止杆的端点C恰好与地面接触.此时CA为0.7m.在此状态下,若一辆货车高3m,宽2.5m,入口两侧不能通车,那么这辆货车在不碰杆的情况下,能从入口内通过吗?请你通过计算说明.(参考数据:≈1.7)22.(8分)如图,在平行四边形中,对角线相交于点,于点.(1)用尺规作于点(要求保留作图痕迹,不要求写作法与证明);(2)求证:.23.(8分)如图,直线y=kx+b经过点A(0,5),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x﹣4≥kx+b的解集.24.(8分)如图,在平面直角坐标系xOy中,直线y=﹣2x+a与y轴交于点C(0,6),与x轴交于点B.(1)求这条直线的解析式;(2)直线AD与(1)中所求的直线相交于点D(﹣1,n),点A的坐标为(﹣3,0).求n的值及直线AD的解析式;25.(10分)已知一个一次函数的图象与一个反比例函数的图象交于点.分别求出这两个函数的表达式;在同一个平面直角坐标系中画出这两个函数的图象,根据图象回答:当取何值时,一次函数的值大于反比例函数的值?求平面直角坐标中原点与点构成的三角形的面积.26.(10分)已知,在矩形中,的平分线DE交BC边于点E,点P在线段DE上(其中EP<PD).
(1)如图1,若点F在CD边上(不与点C,D重合),将绕点P逆时针旋转90°后,角的两边PD、PF分别交AD边于点H、G.①求证:;②探究:、、之间有怎样的数量关系,并证明你的结论;(2)拓展:如图2,若点F在CD的延长线上,过点P作,交射线DA于点G.你认为(2)中DF、DG、DP之间的数量关系是否仍然成立?若成立,给出证明,若不成立,请写出它们所满足的数量关系式,并说明理由.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
根据二次根式的运算法则即可求出答案.【详解】解:(A)原式=,故A错误;(B)原式=3,故B错误;(C)原式=,故C正确;(D)原式=2,故D错误;故选:C【点睛】本题考查二次根式,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.2、B【解析】分析:利用ab<0,得到a<0,b>0或b<0,a>0,然后根据一次函数图象与系数的关系进行判断.详解:因为ab<0,得到a<0,b>0或b<0,a>0,当a<0,b>0,图象经过一、二、四象限;当b<0,a>0,图象经过一、三、四象限,故选B.点睛:本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).3、C【解析】
运用正方形边长相等,结合全等三角形和勾股定理来求解即可.【详解】解:∵a、b、c都是正方形,∴AC=CD,∠ACD=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,∴∠BAC=∠DCE,∵∠ABC=∠CED=90°,AC=CD,∴△ACB≌△DCE,∴AB=CE,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,即Sb=Sa+Sc=11+5=16,故选:C.【点睛】此题主要考查对全等三角形和勾股定理的综合运用,结合图形求解,对图形的理解能力要比较强.4、C【解析】
试题分析:两次降价后的商品的售价=降价前的商品的售价×(1-平均每次降价的百分率)2.由题意可列方程为.选:C.考点:根据实际问题列方程5、C【解析】
先根据等腰三角形的性质求得∠ABC=∠C=70°,继而根据旋转的性质即可求得答案.【详解】∵AB=AC,∠A=40°,∴∠ABC=∠C=(180°-∠A)=×140°=70°,∵△EBD是由△ABC旋转得到,∴旋转角为∠ABC=70°,故选C.【点睛】本题考查了等腰三角形的性质,旋转的性质,熟练掌握相关知识是解题的关键.6、B【解析】
根据完全平方公式先把多项式化简为|1−x|−|x−4|,然后根据x的取值范围分别讨论,求出符合题意的x的值即可.【详解】原式可化简为,当,时,可得无解,不符合题意;当,时,可得时,原式;当,时,可得时,原式;当,时,可得时,原式.据以上分析可得当时,多项式等于.故选B.【点睛】本题主要考查绝对值及二次根式的化简,要注意正负号的变化,分类讨论7、B【解析】
根据勾股定理的逆定理依次判断各项后即可解答.【详解】选项A,32+42=52,符合勾股定理的逆定理,能作为直角三角形三边长度;选项B,52+72≠82,不符合勾股定理的逆定理,不能作为直角三角形三边长度;选项C,82+152=172,符合勾股定理的逆定理,能作为直角三角形三边长度;选项D,12+()2=()2,符合勾股定理的逆定理,能作为直角三角形三边长度.故选B.【点睛】本题考查了勾股定理的逆定理,熟练运用勾股定理的逆定理判定三角形是否为直角三角形是解决问题的关键.8、C【解析】
分3>x+2即x<1和3<x+2即x>1两种情况,根据新定义列出不等式求解可得.【详解】解:当3>x+2,即x<1时,3(x+2)+x+2>0,
解得:x>-2,
∴-2<x<1;
当3<x+2,即x>1时,3(x+2)-(x+2)>0,
解得:x>-2,
∴x>1,
综上,-2<x<1或x>1,
故选C.【点睛】本题主要考查解一元一次不等式组的能力,根据新定义分类讨论并列出关于x的不等式是解题的关键.9、B【解析】
首先判定△ABC是直角三角形,再根据在直角三角形中,斜边上的中线等于斜边的一半可得答案.【详解】∵82+152=289=172,∴AB2+BC2=AC2,∴△ABC是直角三角形,∠ABC=90°,∵BD是AC边上的中线,∴BD=AC=8.5,故选B.【点睛】此题主要考查了勾股定理逆定理,以及直角三角形的性质,关键是正确判定△ABC的形状.10、A【解析】
根据平行四边形的判定方法逐个判断即可解决问题.【详解】解:A、若AB=CD,∠A=∠B,不可以判定四边形ABCD是平行四边形;B、∵AB∥CD,∴∠B+∠C=180°,∵∠A=∠C,∴∠A+∠B=180°,∴AD∥BC,∴四边形ABCD是平行四边形,故B可以判定四边形ABCD是平行四边形;C、根据一组对边平行且相等的四边形是平行四边形,可知C可以判定四边形ABCD是平行四边形;D、根据两组对边分别平行的四边形是平行四边形,可知D可以判定四边形ABCD是平行四边形;故选:A.【点睛】本题考查平行四边形的判定,解题的关键是记住平行四边形的判定方法:两组对边分别平行的四边形是平行四边形.两组对边分别相等的四边形是平行四边形.一组对边平行且相等的四边形是平行四边形.两组对角分别相等的四边形是平行四边形.对角线互相平分的四边形是平行四边形.二、填空题(每小题3分,共24分)11、甲【解析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:由于S2甲<S乙2,则成绩较稳定的演员是甲.故答案为甲.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.12、2【解析】
首先求得菱形的边长,则OH是直角△AOD斜边上的中线,依据直角三角形的性质即可求解.【详解】AD=×40=1.∵菱形ANCD中,AC⊥BD.∴△AOD是直角三角形,又∵H是AD的中点,∴OH=AD=×1=2.故答案是:2.【点睛】本题考查了菱形的性质和直角三角形的性质,直角三角形斜边上的中线等于斜边的一半.13、1【解析】
根据一次函数的性质得出其增减性,进而解答即可.【详解】解:∵一次函数y=﹣2x+5,k=﹣2<0,∴y随x的增大而减小,∵﹣1≤x≤2,∴当x=2时,y的最小值是1,故答案为:1【点睛】此题主要考查了一次函数,根据一次函数的性质得出其增减性是解答此题的关键.14、【解析】
根据旋转的性质,即可求出的度数.【详解】旋转,,,,.故答案为:.【点睛】本题考查了三角形的旋转问题,掌握旋转的性质是解题的关键.15、x<1【解析】
利用函数图象,写出函数y1=k1x+b1的图象在函数y2=k2x+b2的图象下方所对应的自变量的范围即可.【详解】解:根据图象得,当x<1时,y1<y2,即k1x+b1<k2x+b2;故答案为:x<1【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.16、【解析】
在一次函数y=x+4中,分别令x=0,y=0,解相应方程,可求得A、B两点的坐标,由矩形的性质可知EF=OP,可知当OP最小时,则EF有最小值,由垂线段最短可知当OP⊥AB时,满足条件,根据直角三角形面积的不同表示方法可求得OP的长,即可求得EF的最小值.【详解】解:∵一次函数y=x+4中,令x=0,则y=4,令y=0,则x=-3,∴A(0,4),B(-3,0),∵PE⊥y轴于点E,PF⊥x轴于点F,∴四边形PEOF是矩形,且EF=OP,∵O为定点,P在线段上AB运动,∴当OP⊥AB时,OP取得最小值,此时EF最小,∵A(0,4),点B坐标为(-3,0),∴OA=4,OB=3,由勾股定理得:AB==5,∵AB·OP=AO·BO=2S△OAB,∴OP=,故答案为:.【点睛】本题考查了一次函数图象上点的坐标特点,勾股定理、矩形的判定与性质、最值问题等,熟练掌握相关知识、确定出OP的最小值是解题的关键.17、【解析】解:,.18、【解析】
根据三角形法则依次进行计算即可得解.【详解】如图,∵=,,∴.故答案为:.【点睛】本题考查了平面向量,主要利用了三角形法则求解,作出图形更形象直观并有助于对问题的理解.三、解答题(共66分)19、(1)证明见解析;(2)证明见解析.【解析】
(1)利用平行四边形的性质结合全等三角形的判定方法(AAS),得出即可;(2)利用全等三角形的性质得出AE=CF,进而求出四边形AFCE是平行四边形.,再利用菱形的判定方法得出答案.【详解】(1)如图1.∵四边形ABCD是平行四边形,∴AB∥DC,AB="DC."∴∠1=∠2.∵AE∥CF,∴∠3=∠4.在△AEB和△CFD中,,∴△AEB≌△CFD;(2)如图2.∵△AEB≌△CFD,∴AE=CF.∵AE∥CF,∴四边形AFCE是平行四边形.∵∠5=∠4,∠3=∠4,∴∠5=∠3.∴AF=AE.∴四边形AFCE是菱形.20、见详解.【解析】
连接AC、BD交于点O,连接EO并延长交CD于点F;由平行四边形的性质得出AB∥CD,OA=OC,证明△AEO≌△CFO,得出AE=CF,即可得出结论.【详解】解:连接AC、BD交于点O,连接EO并延长交CD于点F;
则四边形AECF为平行四边形;理由如下:
∵四边形ABCD是平行四边形,
∴AB∥CD,OA=OC,
∴∠EAO=∠FCO,
在△AEO和△CFO中,,
∴△AEO≌△CFO(ASA),
∴AE=CF,
又∵AE∥CF,
∴四边形AECF为平行四边形.【点睛】本题考查平行四边形的判定与性质、全等三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.21、不能通过,理由见解析【解析】
直接利用已知得出CF,CG的长,再利用勾股定理得出CF的长进而得出答案.【详解】不能通过.如图,在AB之间找一点F,使BF=2.5m,过点F作GF⊥AB交CD于点G,∵AB=3.3m,CA=0.7m,BF=2.5m,∴CF=AB﹣BF+CA=1.5m,∵∠ECA=60°,∠CGF=30°∴CG=2CF=3m,∴GF=≈2.55(m),∵2.55<3∴这辆货车在不碰杆的情况下,不能从入口内通过.【点睛】此题主要考查了勾股定理的应用,正确得出CG的长是解题关键.22、(1)见解析;(2)见解析.【解析】
(1)以C为圆心,大于AE长为半径画弧,分别交BD于点M,N两点,再分别以M,N为圆心,以大于MN为半径画弧,交于点G,连接CG并延长,交BD于点F,即可得CF⊥BD于点F;(2)由AE⊥BD于点E,CF⊥BD于点F,可得∠AEO=∠CFO=90°,又由在平行四边形ABCD中,OA=OC,即可利用AAS,判定△AOE≌△COF,继而证得结论【详解】解:(1)如图,为所求;(2)∵四边形是平行四边形,∴∵于点,于点,∴在和中,∴≌()∴【点睛】本题考查了平行四边形的性质,以及基本作图:过直线外一点做已知直线的垂线段,掌握平行四边形的性质以及三角形全等的判定和过直线外一点做已知直线的垂线段,是解题的关键.23、(1)y=﹣x+5;(2)点C的坐标为(1,2);(1)x≥1.【解析】
(1)利用待定系数法求一次函数解析式解答即可;
(2)联立两直线解析式,解方程组即可得到点C的坐标;
(1)根据图形,找出点C左边的部分的x的取值范围即可.【详解】(1)∵直线y=﹣kx+b经过点A(5,0)、B(1,4),∴,解方程组得,∴直线AB的解析式为y=﹣x+5;(2)∵直线y=2x﹣4与直线AB相交于点C,∴解方程组,解得,∴点C的坐标为(1,2);(1)由图可知,x≥1时,2x﹣4≥kx+b.【点睛】本题考查两条直线相交或平行问题,解题的关键是掌握一次函数与一元一次不等式和待定系数法求一次函数解析式.24、(1)y=-2x+6,(2)n=8,y=4x+1【解析】
(1)把代入函数解析式,可得答案.(2)先求D的坐标,再利用待定系数法求解AD的解析式.【详解】解:(1)∵直线y=-2x+a与y轴交于点C(0,6),∴a=6,∴y=-2x+6,⑵∵点D(-1,n)在y=-2x+6上,,∴设直线AD的解析式为y=kx+b,解得:∴直线AD的解析式为y=4x+1.【点睛】本题考查的是用待定系数法求一次函数的解析式,掌握待定系数法是解题的关键.25、(1),;(2)图见详解,或;(3).【解析】
(1)设反比例的函数解析式为,一次函数的解析式为,将点P代入可得k值,将点Q代入可得m值,将点P、Q代入求解即可;(2)描点、连线即可画出函数的图象,当一次函数的图象在反比例函数图象的上方时,一次函数的值大于反比例函数的值,由此可确定x的取值;(3)连接PO,QO,设直线与y轴交于点M,由求解.【详解】解:(1)设反比例的函数解析式为,一次函数的解析式为,将点代入得,解得,将点代入得,将点,代入得:,解得所以一次函数的表达式为,反比例函数的表达式为;(2)函数和的图象如图所示,由图象可得,当或时,一次函数的值大于反比例函数的值;(3)如图,连接PO,QO,设直线与y轴交于点M,直线与y轴的交点坐标M(0,-1),即,点P到y轴的距离为2,点Q到y轴的距离为1,,所以平面直角坐标中原点与点构成的三角形的面积为.【点睛】本题考查了一次函数与反比例函数的综合,涉及了待定系数法求函数解析式、画函数图象、根据函数图象及函数值的大小确定自变量的取值范围、围成的三角形的面积,熟练掌握待定系数法及运用数形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 裤子撑架项目营销计划书
- 科学用棱镜市场发展前景分析及供需格局研究预测报告
- 螺旋扳手市场发展前景分析及供需格局研究预测报告
- 云电子商务服务行业市场调研分析报告
- 书签产业链招商引资的调研报告
- 建筑的施工和维修行业市场调研分析报告
- 缆车细分市场深度研究报告
- 太阳镜出租行业经营分析报告
- 花园水管用喷雾器项目营销计划书
- 纸板棺材市场发展前景分析及供需格局研究预测报告
- 2024年保安员证考试题库及答案(共160题)
- 江苏省苏州市市区2023-2024学年五年级上学期期中数学试卷
- 2024年大学试题(财经商贸)-统计预测与决策考试近5年真题集锦(频考类试题)带答案
- 2024-2025学年度北师大版八年级上册物理期中模拟测试卷
- 主要负责人和安全生产管理人员安全培训课件初训修订版
- 2024220kV 预制舱式模块化海上风电升压站
- 2024秋期国家开放大学《国家开放大学学习指南》一平台在线形考(任务一)试题及答案
- 2024年新人教版道德与法治一年级上册 9 作息有规律 教学课件
- 2024新人教版道法一年级上册第二单元:过好校园生活大单元整体教学设计
- 2024年深圳技能大赛-鸿蒙移动应用开发(计算机程序设计员)职业技能竞赛初赛理论知识
- 食堂供餐招标评分表
评论
0/150
提交评论