




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆市江北九校2024年八年级下册数学期末经典模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.在平面直角坐标系中,点M到x轴的距离是3,到y轴的距离是1,且在第二象限,则点M的坐标是()A.(3,﹣1) B.(-1,3) C.(-3,1) D.(-2,﹣3)2.正方形具有而菱形不一定具有的性质是()A.对角线互相垂直 B.对角线相等 C.对角线互相平分 D.对角相等3.函数y=x+1中自变量x的取值范围是()A.x≥﹣1
B.x≤﹣1
C.x>﹣1
D.x<﹣14.在一个直角三角形中,如果斜边长是10,一条直角边长是6,那么另一条直角边长是().A.6 B.7 C.8 D.95.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为()A. B. C. D.6.若在实数范围内有意义,则x的取值范围在数轴上表示正确的是(
)A.
B. C.
D.7.点P(1,a),Q(﹣2,b)是一次函数y=kx+1(k<0)图象上两点,则a与b的大小关系是()A.a>b B.a=b C.a<b D.不能确定8.一个正n边形的每一个外角都是45°,则n=()A.7 B.8 C.9 D.109.已知y=(k-3)x|k|-2+2是一次函数,那么k的值为()A. B.3 C. D.无法确定10.如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()A.90°﹣α B.α C.180°﹣α D.2α二、填空题(每小题3分,共24分)11.如图是我国古代数学家赵爽的《勾股圆方图》,由四个全等的直角三角形和一个小正方形拼成的大正方形.如果图中大、小正方形的面积分别为52和4,直角三角形两条直角边分别为x,y,那么=_____.12.已知实数满足,则以的值为两边长的等腰三角形的周长是_________________.13.如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=2,则AC=
_________14.如图,直线y1=kx+b与直线y2=mx交于点P(1,m),则不等式mx>kx+b的解集是______15.如图,A、B两点被池塘隔开,在AB外选一点C,连接AC、BC,取AC、BC的中点D、E,量出DE=a,则AB=2a,它的根据是________.16.已知一次函数y=kx+b(k≠0)的图象过点(2,0),且与两坐标轴围成的三角形的面积为1,则这个一次函数的解析式是_____.17.如图,在中,,点、、分别为、、的中点.若,则的长为_____________.18.若,则m-n的值为_____.三、解答题(共66分)19.(10分)已知:如图,在菱形ABCD中,AC、BD交于点O,菱形的周长为8,∠ABC=60°,求BD的长和菱形ABCD的面积.20.(6分)“一路一带”倡议6岁了!到日前为止,中国已与126个国家和29个国际组织签署174份合作文件,共建“一路一带”国家已由亚欧延伸至非洲、拉美、南太等区域.截止2019年一季度末,人民币海外基金业务规模约3000亿元,其投资范围覆盖交通运输、电力能源、金融业和制造业等重要行业,投资行业统计图如图所示.(1)求投资制造业的基金约为多少亿元?(2)按照规划,中国将继续对“一路一带”基金增加投入,到2019年三季度末,共增加投入630亿元,假设平均每季度的增长率相等,求平均每季度的增长率是多少?21.(6分)如图,在平面直角坐标系中,位于第二象限的点在反比例函数的图像上,点与点关于原点对称,直线经过点,且与反比例函数的图像交于点.(1)当点的横坐标是-2,点坐标是时,分别求出的函数表达式;(2)若点的横坐标是点的横坐标的4倍,且的面积是16,求的值.22.(8分)如图,直线和相交于点C,分别交x轴于点A和点B点P为射线BC上的一点。(1)如图1,点D是直线CB上一动点,连接OD,将沿OD翻折,点C的对应点为,连接,并取的中点F,连接PF,当四边形AOCP的面积等于时,求PF的最大值;(2)如图2,将直线AC绕点O顺时针方向旋转α度,分别与x轴和直线BC相交于点S和点R,当是等腰三角形时,直接写出α的度数.23.(8分)如图,平行四边形ABCD中,AE=CE,请仅用无刻度的直尺完成下列作图:(1)在图1中,作出∠DAE的角平分线;(2)在图2中,作出∠AEC的角平分线.24.(8分)某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.(1)甲、乙工程队每天各能铺设多少米?(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你帮助设计出来.25.(10分)先化简,再求值:,其中x=﹣1.26.(10分)为了让学生拓展视野、丰富知识,加深与自然和文化的亲近感,增加对集体生活方式和社会公共道德的体验,我区某中学决定组织部分师生去随州炎帝故里开展研学旅行活动.在参加此次活动的师生中,若每位老师带个学生,还剩个学生没人带;若每位老师带个学生,就有一位老师少带个学生.为了安全,既要保证所有师生都有车坐,又要保证每辆客车上至少要有名老师.现有甲、乙两种大客车,它们的载客量和租金如表所示.(1)参加此次研学旅行活动的老师有人;学生有人;租用客车总数为辆;(2)设租用辆乙种客车,租车费用为元,请写出与之间的函数关系式;(3)在(2)的条件下,学校计划此次研学旅行活动的租车总费用不超过元,你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
根据点到坐标轴的距离分别求出该点横、纵坐标的绝对值,再根据点在第二象限得出横、纵坐标的具体值即可.【详解】解:由点M到x轴的距离是3,到y轴的距离是1,得
|y|=3,|x|=1,由点M在第二象限,得x=-1,y=3,
则点M的坐标是(-1,3),
故选:B.【点睛】本题考查点到坐标轴的距离和平面直角坐标系中各象限内点的坐标特征.熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.2、B【解析】
根据正方形的性质以及菱形的性质逐项进行分析即可得答案.【详解】菱形的性质有①菱形的对边互相平行,且四条边都相等,②菱形的对角相等,邻角互补,③菱形的对角线分别平分且垂直,并且每条对角线平分一组对角;正方形具有而菱形不一定具有的性质是矩形的特殊性质(①矩形的四个角都是直角,②矩形的对角线相等),A.菱形和正方形的对角线都互相垂直,故本选项错误;B.菱形的对角线不一定相等,正方形的对角线一定相等,故本选项正确;C.菱形和正方形的对角线互相平分,故本选项错误;D.菱形和正方形的对角都相等,故本选项错误,故选B.【点睛】本题考查了正方形与菱形的性质,解题的关键是熟记正方形与菱形的性质定理.3、A【解析】
根据被开方数大于等于0列式计算即可得解.【详解】解:由题意得,x+1⩾0,解得x⩾-1.故选:A.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4、C【解析】
本题直接根据勾股定理求解即可.【详解】由勾股定理的变形公式可得:另一直角边长==1.故选C.【点睛】本题考查勾股定理的应用,熟练掌握勾股定理是解题的关键.5、A【解析】
先根据矩形的判定得出四边形是矩形,再根据矩形的性质得出,互相平分且相等,再根据垂线段最短可以得出当时,的值最小,即的值最小,根据面积关系建立等式求解即可.【详解】解:∵,,,∴,∵,,∴四边形是矩形,∴,互相平分,且,又∵为与的交点,∴当的值时,的值就最小,而当时,有最小值,即此时有最小值,∵,∴,∵,,,∴,∴,∴.故选:.【点睛】本题考查了矩形的性质的运用,勾股定理的运用,三角形的面积公式的运用,垂线段最短的性质的运用,找出取最小值时图形的特点是解题关键.6、D【解析】
根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.【详解】∵二次根式在实数范围内有意义,∴被开方数x+2为非负数,∴x+2≥0,解得:x≥-2.故答案选D.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.7、C【解析】
先把点P(1,a),Q(-2,b)分别代入一次函数解析式得到k+1=a,-2k+1=b,然后根据k<0得到k<-2k,则即可得到a、b的大小关系.【详解】把点P(1,a),Q(-2,b)分别代入y=kx+1得k+1=a,-2k+1=b,∵k<0,∴a<b.故选C.【点睛】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b(k≠0)的图象上的点满足其解析式.8、B【解析】
根据正多边形的边数=360°÷每一个外角的度数,进行计算即可得解.【详解】解:n=360°÷45°=1.故选:B.【点睛】本题考查了多边形的外角,熟记正多边形的边数、每一个外角的度数、以及外角和360°三者之间的关系是解题的关键.9、C【解析】
根据一次函数的定义可得k-2≠0,|k|-2=1,解答即可.【详解】一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.所以|k|-2=1,解得:k=±2,因为k-2≠0,所以k≠2,即k=-2.故选:C.【点睛】本题主要考查一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.10、C【解析】分析:根据旋转的性质和四边形的内角和是360°,可以求得∠CAD的度数,本题得以解决.详解:由题意可得,∠CBD=α,∠ACB=∠EDB,∵∠EDB+∠ADB=180°,∴∠ADB+∠ACB=180°,∵∠ADB+∠DBC+∠BCA+∠CAD=360°,∠CBD=α,∴∠CAD=180°−α,故选C.点睛:本题考查旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题(每小题3分,共24分)11、1【解析】
根据题意,结合图形求出xy与的值,原式利用完全平方公式展开后,代入计算即可求出其值.【详解】解:根据勾股定理可得=52,
四个直角三角形的面积之和是:×4=52-4=48,
即2xy=48,
∴==52+48=1.
故答案是:1.【点睛】本题主要考查了勾股定理,以及完全平方公式的应用,根据图形的面积关系,求得和xy的值是解题的关键.12、19【解析】
先根据非负数的性质求得x、y的值,然后再根据等腰三角形的性质以及三角形三边关系进行讨论即可得.【详解】根据题意得,x-3=0,y-8=0,解得x=3,y=8,①3是腰长时,三角形的三边分别为3、3、8,∵3+3<8,∴不能组成三角形,②3是底边时,三角形的三边分别为3、8、8,能组成三角形,周长=3+8+8=19,所以,三角形的周长为19,故答案为:19.【点睛】本题了非负数的性质,等腰三角形的性质,三角形三边的关系,涉及了绝对值的非负性,二次根式的非负性,等腰三角形的性质等,求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.13、1【解析】解:∵在矩形ABCD中,AO=AC,BO=BD,AC=BD,∴AO=BO.又∵∠AOB=60°,∴△AOB为等边三角形,∴AC=2AB=1.14、x>1【解析】分析:根据两直线的交点坐标和函数的图象即可求出答案.详解:∵直线y1=kx+b与直线y2=mx交于点P(1,m),
∴不等式mx>kx+b的解集是x>1,
故答案为x>1.点睛:解答本题的关键是熟练掌握图象在上方的部分对应的函数值大,图象在下方的部分对应的函数值小.15、三角形的中位线等于第三边的一半【解析】∵D,E分别是AC,BC的中点,
∴DE是△ABC的中位线,
∴DE=AB,
设DE=a,则AB=2a,故答案是:三角形的中位线等于第三边的一半.16、或【解析】
先根据面积求出三角形在y轴上边的长度,再分正半轴和负半轴两种情况讨论求解.【详解】根据题意,一次函数y=kx+b(k≠0)的图象与y轴交点坐标为(0,b),则×2×|b|=1,解得|b|=1,∴b=±1,①当b=1时,与y轴交点为(0,1),∴2k+1=0,解得k=-,∴函数解析式为y=-x+1;②当b=-1时,与y轴的交点为(0,-1),∴2k-1=0,解得k=,∴函数解析式为y=-x-1,综上,这个一次函数的解析式是或,故答案为:或.【点睛】本题考查了待定系数法求一次函数解析式,先根据三角形面积求出与y轴的交点,再利用待定系数法求函数解析式,本题需要注意有两种情况.17、1【解析】
已知CD是Rt△ABC斜边AB的中线,那么AB=2CD;EF是△ABC的中位线,则EF应等于AB的一半.【详解】解:∵△ABC是直角三角形,CD是斜边的中线,∴AB=2CD又∵EF是△ABC的中位线,
∴AB=2CD=2×1=10cm,故答案为:1.【点睛】此题主要考查了三角形中位线定理以及直角三角形斜边上的中线等知识,用到的知识点为:(1)直角三角形斜边的中线等于斜边的一半;(2)三角形的中位线等于对应边的一半.18、4【解析】
根据二次根式与平方的非负性即可求解.【详解】依题意得m-3=0,n+1=0,解得m=3,n=-1,∴m-n=4【点睛】此题主要考查二次根式与平方的非负性,解题的关键是熟知二次根式与平方的非负性.三、解答题(共66分)19、BD=2,S菱形ABCD=2.【解析】
先根据菱形的性质得出AB=BC=2,AO=CO,BO=DO,AC⊥BD,然后证明△ABC是等边三角形,进而求出AC的长度,再利用勾股定理即可得出BD的长度,最后利用S菱形ABCD=AC×BD即可求出面积.【详解】∵菱形ABCD的周长为8,∴AB=BC=2,AO=CO,BO=DO,AC⊥BD,.∵∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=BC=2,∴AO=1.,∴BO==,∴BD=,∴S菱形ABCD=AC×BD=2.【点睛】本题主要考查菱形的性质,勾股定理,掌握菱形的性质是解题的关键.20、(1)630亿元;(2)10%【解析】
(1)由投资电力能源所在扇形的圆心角求出投资电力能源所占比例,再利用投资制造业的基金=投资总金额×D所占的比例,即可求出结论;
(2)设平均每季度的增长率是x,根据2019年一季度末及三季度末的投资总额,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【详解】(1)×100%=20%,3000×(1-12%-15%-20%-32%)=630(亿元).
(2)设平均每季度的增长率是x,依题意,得:3000(1+x)2=3000+630,
解得:x1=0.1=10%,x2=-2.1(舍去).
答:平均每季度增长10%.【点睛】考查了一元二次方程的应用以及用样本估计总体,解题的关键是:(1)求出图中B所占比例;(2)找准等量关系,正确列出一元二次方程.21、(1),;(2).【解析】
(1)先将点C坐标代入,利用待定系数法可求得y1的解析式,继而求得点A的坐标,点B坐标,根据B、C坐标利用待定系数法即可求得y2的解析式;(2)分别过点作轴于点,轴于点,连接,由三角形中线的性质可得,再根据反比例函数的比例系数的几何意义可得,从而可得,设点的横坐标为,则点坐标表示为、,继而根据梯形的面积公式列式进行计算即可.【详解】(1)由已知,点在的图象上,∴,∴,∵点的横坐标为,∴点为,∵点与点关于原点对称,∴为,把,代入得,解得:,∴;(2)分别过点作轴于点,轴于点,连接,∵为中点,∴∵点在双曲线上,∴∴,设点的横坐标为,则点坐标表示为、,∴,解得.【点睛】本题考查了反比例函数与一次函数综合,涉及了待定系数法,反比例函数k的几何意义,熟练掌握和灵活运用相关知识是解题的关键.22、(1)PF的最大值是;(2)的度数:,,,.【解析】
(1)设P(m,-m+6),连接OP.根据S四边形AOCP=S△AOP+S△OCP=,构建方程求出点P坐标,取OB的中点Q,连接QF,QP,求出FQ,PQ,根据PF≤PQ+QF求解即可.(2)分四种情形:①如图2-1中,当RS=RB时,作OM⊥AC于M.②如图2-2中,当BS=BR时,③如图2-3中,当SR=SB时,④如图2-4中,当BR=BS时,分别求解即可解决问题.【详解】解:(1)在中,当时,;当时,﹒∴,设,连接OP∴∴∴∴取OB的中点Q,连接FQ,PQ在中,当时,∴∴又∵点F是的中点,∴∵所以PF的最大值是(2)①如图2-1中,当RS=RB时,作OM⊥AC于M.∵tan∠OAC==,∴∠OAC=60°,∵OC=OB=6,∴∠OBC=∠OCB=45°,∵∠OM′S=∠BRS=90°,∴OM′∥BR,∴∠AOM′=∠OBC=45°,∵∠AOM=30°,∴α=45°-30°=15°.②如图2-2中,当BS=BR时,易知∠BSR=22.5°,∴∠SOM′=90°-22.5°=67.5°,∴α=∠MOM′=180°-30°-67.5°=82.5°③如图2-3中,当SR=SB时,α=180°-30°=150°.④如图2-4中,当BR=BS时,α=150°+(90°-67.5°)=172.5°.综上所述,满足条件的α的值为15°或82.5°或150°或172.5°.【点睛】本题属于一次函数综合题,考查了旋转变换,四边形的面积,最短问题等知识,解题的关键是学会利用两点之间线段最短解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.23、(1)作图见解析;(2)作图见解析.【解析】试题分析:(1)连接AC,由AE=CE得到∠EAC=∠ECA,由AD∥BC得∠DAC=∠ECA,则∠CAE=∠CAD,即AC平分∠DAE;
(2)连接AC、BD交于点O,连接EO,由平行四边形的性质及等腰三角形的性质可知EO为∠AEC的角平分线.试题解析:(1)连接AC,AC即为∠DAE的平分线;如图1所示:(2)①连接AC、BD交于点O,②连接EO,EO为∠AEC的角平分线;如图2所示.24、(1)甲、乙工程队每天分别能铺设米和米.(2)所以分配方案有3种.方案一:分配给甲工程队米,分配给乙工程队米;方案二:分配给甲工程队米,分配给乙工程队米;方案三:分配给甲工程队米,分配给乙工程队米.【解析】
(1)设甲工程队每天能铺设x米.根据甲工程队铺设350米所用的天数与乙工程队铺设2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人力资源管理部员工培训
- 影像技术在心血管疾病中的应用
- 撕纸游戏的教育意义及在家长会中的应用
- 幼师全员培训心得
- 山东省济南市2024-2025学年高三上学期1月期末考试 英语 含解析
- 心肌梗塞的治疗及护理
- 公文处理培训课件
- 急黄的护理课件
- 大酒店服务知识培训课件
- 少儿插画美术课件
- 抽水蓄能电站工程岩锚梁砼施工监理控制措施
- 2022版义务教育(道德与法治)课程标准(附课标解读)
- 仪容仪表礼节礼貌培训(定)
- 2023年衢州市属事业单位选调考试真题及答案
- 新生儿口腔行为运动干预
- 拓展天然气在中国的利用
- 2024年黄冈职业技术学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- 如何处理压力和焦虑
- 依法治企知识讲座课件
- 《我和书的故事》作文指导课件
- 《蚁群算法》课件
评论
0/150
提交评论