江苏省兴化市顾庄区2024届数学八年级下册期末调研模拟试题含解析_第1页
江苏省兴化市顾庄区2024届数学八年级下册期末调研模拟试题含解析_第2页
江苏省兴化市顾庄区2024届数学八年级下册期末调研模拟试题含解析_第3页
江苏省兴化市顾庄区2024届数学八年级下册期末调研模拟试题含解析_第4页
江苏省兴化市顾庄区2024届数学八年级下册期末调研模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省兴化市顾庄区2024届数学八年级下册期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列二次根式是最简二次根式的是()A. B. C. D.2.下列不是同类二次根式的是()A. B. C. D.3.把代数式2x2﹣18分解因式,结果正确的是()A.2(x2﹣9) B.2(x﹣3)2C.2(x+3)(x﹣3) D.2(x+9)(x﹣9)4.2018年一季度,华为某销公营收入比2017年同期增长22%,2019年第一季度营收入比2018年同期增长30%,2018年和2019年第一季度营收入的平均增长率为x,则可列方程()A.2x=22%+30% B.1+xC.1+2x=1+22%1+30%5.点P是正方形ABCD边AB上一点(不与A、B重合),连接PD并将线段PD绕点P顺时针旋转90°,得线段PE,连接BE,则∠CBE等于()A.75° B.60° C.30° D.45°6.用一些相同的正方形,摆成如下的一些大正方形,如图第(1)个图中小正方形只有一个,且阴影面积为1,第(2)个图中阴影小正方形面积和3;第(3)个图中阴影小正方形面积和为5,第(9)个图中阴影小正方形面积和为()A.11 B.13 C.15 D.177.如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2,AD=1,点Q的坐标为(0,2).点P(x,0)在边AB上运动,若过点Q、P的直线将矩形ABCD的周长分成2:1两部分,则x的值为()A.或- B.或- C.或- D.或-8.在一次中学生田径运动会上,参加跳远的名运动员的成绩如下表所示:成绩(米)人数则这名运动员成绩的中位数、众数分别是()A. B. C., D.9.下列各组数中,不是勾股数的是()A.3,4,5 B.5,12,13 C.6,8,10 D.7,13,1810.已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,2),且|a-c|+=0,将线段PQ向右平移a个单位长度,其扫过的面积为24,那么a+b+c的值为()A.12 B.14 C.16 D.20二、填空题(每小题3分,共24分)11.当a__________时,分式有意义.12.如图,在中,,,,若点P是边AB上的一个动点,以每秒3个单位的速度按照从运动,同时点Q从以每秒1个单位的速度运动,当一个动点到达终点时,另一个动点也随之停止运动。在运动过程中,设运动时间为t,若为直角三角形,则t的值为________.13.对甲、乙、丙三名射击手进行20次测试,平均成绩都是8.5环,方差分别是0.4,3.2,1.6,在这三名射击手中成绩比较稳定的是_________________.14.已知,是一元二次方程的两个实数根,则的值是______.15.你喜欢足球吗?下面是对耒阳市某校八年级学生的调查结果:男同学女同学喜欢的7536不喜欢的1524则男同学中喜欢足球的人数占全体同学的百分比是________.16.已知=,=,那么=_____(用向量、的式子表示)17.函数为任意实数)的图象必经过定点,则该点坐标为____.18.如图,△OAB的顶点A在双曲线y=(x>0)上,顶点B在双曲线y=-(x<0)上,AB中点P恰好落在y轴上,则△OAB的面积为_____.三、解答题(共66分)19.(10分)把下列各式因式分解:(1)(x2﹣9)+3x(x﹣3)(2)3ax2+6axy+3ay220.(6分)如图,在直角三角形ABC中,∠C=90°,∠B=60°,AB=8cm,E、F分别为边AC、AB的中点.(1)求∠A的度数;(2)求EF和AE的长.21.(6分)如图,点在同一直线上,,,.求证:.22.(8分)如图所示,在ΔABC中,点D在BC上,CF⊥AD于F,且CF平分∠ACB,AE=EB.求证:EF=123.(8分)用适当的方法解下列方程:(1)(2)24.(8分)如图,在平行四边形中,的平分线交于点,的平分线交于点.(1)若,,求的长.(2)求证:四边形是平行四边形.25.(10分)如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.26.(10分)如图.已知A、B两点的坐标分别为A(0,),B(2,0).直线AB与反比例函数的图象交于点C和点D(1,a).(1)求直线AB和反比例函数的解析式.(2)求∠ACO的度数.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

根据最简二次根式的概念即可求出答案.【详解】(A)原式=2,故A不是最简二次根式;(C)原式=2,故B不是最简二次根式;(D)原式=,故D不是最简二次根式;故选:B.【点睛】此题考查最简二次根式,解题关键在于掌握运算法则2、A【解析】

根据二次根式的性质把各个二次根式化简,根据同类二次根式的概念判断即可.【详解】解:A、与不是同类二次根式;B、=与是同类二次根式;C、=2与是同类二次根式;D、=3与是同类二次根式;故选:A.【点睛】本题考查的是同类二次根式的定义,掌握二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式是解题的关键.3、C【解析】试题分析:首先提取公因式2,进而利用平方差公式分解因式得出即可.解:2x2﹣18=2(x2﹣9)=2(x+3)(x﹣3).故选C.考点:提公因式法与公式法的综合运用.4、D【解析】

利用两种方法算出2019年第一季度的收入,因所得结果是一致的,进而得出等式即可.【详解】解:如果2017年第一季度收入为a,则根据题意2019年第一季度的收入为:a(1+22%)(1+30%),设2018年和2019年第一季度营收入的平均增长率为x,根据题意又可得2019年第一季度收入为:a1+x2,此a(1+22%)(1+30%)=a1+x2,即故选择:D.【点睛】此题主要考查了根据实际问题抽象出一元二次方程,求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.5、D【解析】

过E作AB的延长线AF的垂线,垂足为F,可得出∠F为直角,又四边形ABCD为正方形,可得出∠A为直角,进而得到一对角相等,由旋转可得∠DPE为直角,根据平角的定义得到一对角互余,在直角三角形ADP中,根据两锐角互余得到一对角互余,根据等角的余角相等可得出一对角相等,再由PD=PE,利用AAS可得出三角形ADP与三角形PEF全等,根据确定三角形的对应边相等可得出AD=PF,AP=EF,再由正方形的边长相等得到AD=AB,由AP+PB=PB+BF,得到AP=BF,等量代换可得出EF=BF,即三角形BEF为等腰直角三角形,可得出∠EBF为45°,再由∠CBF为直角,即可求出∠CBE的度数.【详解】过点E作EF⊥AF,交AB的延长线于点F,则∠F=90°,∵四边形ABCD为正方形,∴AD=AB,∠A=∠ABC=90°,∴∠ADP+∠APD=90°,由旋转可得:PD=PE,∠DPE=90°,∴∠APD+∠EPF=90°,∴∠ADP=∠EPF,在△APD和△FEP中,∵,∴△APD≌△FEP(AAS),∴AP=EF,AD=PF,又∵AD=AB,∴PF=AB,即AP+PB=PB+BF,∴AP=BF,∴BF=EF,又∠F=90°,∴△BEF为等腰直角三角形,∴∠EBF=45°,又∠CBF=90°,则∠CBE=45°.故选D.【点睛】此题考查了正方形的性质,全等三角形的判定与性质,旋转的性质,以及等腰直角三角形的判定与性质,其中作出相应的辅助线是解本题的关键.6、D【解析】

根据前4个图中阴影小正方形的面积和找到规律,然后利用规律即可解题.【详解】第(1)个面积为12﹣02=1;第(2)个面积为22﹣12=3;第(3)个面积为32﹣22=5;…第(9)个面积为92﹣82=17;故选:D.【点睛】本题为图形规律类试题,找到规律是解题的关键.7、D【解析】

分类讨论:点P在OA上和点P在OB上两种情况.根据题意列出比例关系式,直接解答即可得出x得出值.【详解】如图,∵AB的中点与原点O重合,在矩形ABCD中,AB=2,AD=1,∴A(﹣1,0),B(1,0),C(1,1).当点P在OB上时.易求G(,1)∵过点Q、P的直线将矩形ABCD的周长分成2:1两部分,则AP+AD+DG=3+x,CG+BC+BP=3﹣x,由题意可得:3+x=2(3﹣x),解得x=.由对称性可求当点P在OA上时,x=﹣.故选:D.【点睛】考查了一次函数的综合题,解题关键是运用数形结合思想.8、D【解析】

根据中位数、众数的定义即可解决问题.【详解】解:这些运动员成绩的中位数、众数分别是4.70,4.1.故选:D.【点睛】本题考查中位数、众数的定义,解题的关键是记住中位数、众数的定义,属于中考基础题.9、D【解析】

根据勾股定理的逆定理,验证两小边的平方和是否等于最长边的平方即可得.【详解】A、32+42=52,能构成直角三角形,是正整数,故是勾股数;B、52+122=132,能构成直角三角形,是正整数,故是勾股数;C、62+82=102,能构成直角三角形,是正整数,故是勾股数;D、72+132≠182,不能构成直角三角形,故不是勾股数,故选D.【点睛】本题考查了勾股定理的逆定理,勾股数问题,给三个正整数,看两个较小的数的平方和是否等于最大数的平方,若相等,则这三个数为勾股数,否则就不是.10、C【解析】

有非负数的性质得到a=c,b=8,,PQ∥y轴,由于其扫过的图形是矩形可求得,代入即可求得结论.【详解】解:|a-c|+=0,∴a=c,b=8,,PQ∥y轴,∴PQ=8-2=6,将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和6的矩形,,∴a=4,∴c=4,∴a+b+c=4+8+4=16;故选:C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y轴,进而求得PQ是解题的关键.二、填空题(每小题3分,共24分)11、【解析】

根据分式有意义的条件可得,再解不等式即可.【详解】解:分式有意义,则;解得:,故答案为:.【点睛】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.12、或或【解析】

由已知得出∠B=60°,AB=2BC=18,①当∠BQP=90°时,则∠BPQ=30°,BP=2BQ,得出18-3t=2t,解得t=;②当∠QPB=90°时,则∠BQP=30°,BQ=2BP,若0<t<6时,则t=2(18-3t),解得t=,若6<t≤9时,则t=2(3t-18),解得t=.【详解】解:∵∠C=90°,∠A=30°,BC=9,∴∠B=60°,AB=2BC=18,①当∠BQP=90°时,如图1所示:则AC∥PQ,∴∠BPQ=30°,BP=2BQ,∵BP=18-3t,BQ=t,∴18-3t=2t,解得:t=;②当∠QPB=90°时,如图2所示:∵∠B=60°,∴∠BQP=30°,∴BQ=2BP,若0<t<6时,则t=2(18-3t),解得:t=,若6<t≤9时,则t=2(3t-18),解得:t=;故答案为:或或.【点睛】本题考查了含30°角直角三角形的判定与性质、平行线的判定与性质等知识,熟练掌握含30°角直角三角形的性质是解题的关键.13、甲【解析】

根据方差的意义即可得出结论.【详解】根据方差的定义,方差越小数据越稳定,因为=0.4,=3.2,=1.6,方差最小的为甲,所以本题中成绩比较稳定的是甲,故答案为甲.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14、1【解析】

根据一元二次方程的根与系数的关系即可解答.【详解】解:根据一元二次方程的根与系数关系可得:,所以可得故答案为1.【点睛】本题主要考查一元二次方程的根与系数关系,这是一元二次方程的重点知识,必须熟练掌握.15、50【解析】

先计算调查的男同学喜欢与不喜欢的全体人数,再用男同学中喜欢的人数比上全体人数乘以100%即可得出答案.【详解】调查的全体人数为75+15+36+24=150人,所以男同学中喜欢足球的人数占全体同学的百分比=故答案为50.【点睛】本题考查的是简单的统计,能够计算出调查的全体人数是解题的关键.16、.【解析】

根据,即可解决问题.【详解】∵,∴.故答案为.【点睛】本题考查向量的定义以及性质,解题的关键是理解向量的定义,记住:,这个关系式.17、(1,2)【解析】

先把函数解析式化为y=k(x-1)+2的形式,再令x=1求出y的值即可.【详解】解:函数可化为,当,即时,,该定点坐标为.故答案为:.【点睛】本题考查的是一次函数图象上点的坐标特点,把原函数的解析式化为y=k(x-1)+2的形式是解答此题的关键.18、5.【解析】

分别作BC⊥y轴于点C,AD⊥y轴于点D,由P为AB的中点,得到S△ADP=S△BCP,在由A,B都在反比例函数上得到面积,转换即可【详解】如图分别作BC⊥y轴于点C,AD⊥y轴于点D,∵P为AB的中点,∴S△ADP=S△BCP,则S△ABO=S△BOC+S△OAC,∵A在双曲线y=(x>0)上,顶点B在双曲线y=-(x<0)上,∴S△BOC=2,S△OAD=3,则S△ABO=5,故答案为5【点睛】熟练掌握反比例函数上的点与坐标轴和原点围成的三角形面积为|k|和面积转换是解决本题的关键三、解答题(共66分)19、(1)(x﹣3)(4x+3);(1)3a(x+y)1.【解析】

(1)原式利用平方差公式变形,再提取公因式即可;

(1)原式提取公因式,再利用完全平方公式分解即可.【详解】(1)原式=(x+3)(x﹣3)+3x(x﹣3)=(x﹣3)(4x+3);(1)原式=3a(x1+1xy+y1)=3a(x+y)1.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.20、(1)30°(2)EF=2cm,AE=2cm【解析】

(1)由“直角三角形的两个锐角互余”的性质来求∠A的度数;(2)由“30度角所对的直角边等于斜边的一半”求得BC=AB=4cm,再利用中位线的性质即可解答【详解】(1)∵在Rt△ABC中,∠C=90°,∠B=60°∴∠A=90°-∠B=30°即∠A的度数是30°.(2)∵在Rt△ABC中,∠C=90°,∠A=30°,AB=8cm∴BC=AB=4cm∴AC==cm∴AE=AC=2cm∵E、F分别为边AC、AB的中点∴EF是△ABC的中位线∴EF=BC=2cm.【点睛】此题考查三角形中位线定理,含30度角的直角三角形,解题关键在于利用勾股定理进行计算21、详见解析【解析】

先证出,由证明Rt△ABC≌Rt△DFE,得出对应边相等即可.【详解】解:证明:,∴△ABC和△DEF都是直角三角形,,即,在Rt△ABC和Rt△DFE中,,∴Rt△ABC≌Rt△DFE(HL),∴.【点睛】本题考查了全等三角形的判定与性质;熟练掌握直角三角形全等的判定方法是解决问题的关键.22、详见解析【解析】

首先根据已知易证ΔACF≅ΔDCF,可得F是AD中点,再根据三角形的中位线定理可得EF=1【详解】证明:∵CF⊥AD,CF平分∠ACB,∴∠AFC=∠DFC=90°,∠ACF=∠DCF,又∵CF=CF,∴ΔACF≅ΔDCF(ASA),∴AF=DF.又∵AE=EB,∴EF=1【点睛】此题主要考查了三角形中位线定理,以及全等三角形的判定和性质,关键是掌握三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.23、(1);(2).【解析】

(1)首先分解因式,再用十字相乘法计算;(2)首先转化形式,然后直接采用平方差公式计算.【详解】原方程可转化为:原方程可转化为:【点睛】此题主要考查一元二次方程的解法,熟练运用,即可解题.24、(1);(2)证明见解析.【解析】

(1)根据等腰三角形的性质即可求解;(2)根据角平分线的性质及平行线的判定得到,再根据即可证明

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论