![辽宁省沈阳市苏家屯区2024年数学八年级下册期末综合测试试题含解析_第1页](http://file4.renrendoc.com/view4/M02/1A/01/wKhkGGYYIW-AFec0AAG8ZhGFXmw646.jpg)
![辽宁省沈阳市苏家屯区2024年数学八年级下册期末综合测试试题含解析_第2页](http://file4.renrendoc.com/view4/M02/1A/01/wKhkGGYYIW-AFec0AAG8ZhGFXmw6462.jpg)
![辽宁省沈阳市苏家屯区2024年数学八年级下册期末综合测试试题含解析_第3页](http://file4.renrendoc.com/view4/M02/1A/01/wKhkGGYYIW-AFec0AAG8ZhGFXmw6463.jpg)
![辽宁省沈阳市苏家屯区2024年数学八年级下册期末综合测试试题含解析_第4页](http://file4.renrendoc.com/view4/M02/1A/01/wKhkGGYYIW-AFec0AAG8ZhGFXmw6464.jpg)
![辽宁省沈阳市苏家屯区2024年数学八年级下册期末综合测试试题含解析_第5页](http://file4.renrendoc.com/view4/M02/1A/01/wKhkGGYYIW-AFec0AAG8ZhGFXmw6465.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省沈阳市苏家屯区2024年数学八年级下册期末综合测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.一元二次方程的一次项系数为()A.1 B. C.2 D.-22.矩形的对角线长为20,两邻边之比为3:4,则矩形的面积为()A.20B.56C.192D.以上答案都不对3.直角三角形两条直角边的长分别为3和4,则斜边长为()A.4 B.5 C.6 D.104.下列四个二次根式中,是最简二次根式的是()A. B. C. D.5.如图,点Р是边长为2的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,的最小值是()A.1 B. C.2 D.6.下列事件为必然事件的是()A.抛掷一枚硬币,落地后正面朝上B.篮球运动员投篮,投进篮筐;C.自然状态下水从高处流向低处;D.打开电视机,正在播放新闻.7.下列计算正确的是()A.×=4 B.+= C.÷=2 D.=﹣158.已知一个多边形的内角和等于它的外角和,则这个多边形的边数为A.3B.4C.5D.69.下列各式不能用平方差公式法分解因式的是()A.x2﹣4 B.﹣x2﹣y2 C.m2n2﹣1 D.a2﹣4b210.如图,O既是AB的中点,又是CD的中点,并且AB⊥CD.连接AC、BC、AD、BD,则AC,BC,AD,BD这四条线段的大小关系是()A.全相等B.互不相等C.只有两条相等D.不能确定二、填空题(每小题3分,共24分)11.根据图中的程序,当输入x=2时,输出结果y=________.12.如图,在平行四边形纸片ABCD中,AB=3,将纸片沿对角线AC对折,BC边与AD边交于点E,此时,△CDE恰为等边三角形,则图中重叠部分的面积为_____.13.已知与成正比例关系,且当时,,则时,_______.14.命题“等腰三角形两底角相等”的逆命题是_______15.如图是小强根据全班同学喜爱四类电视节目的人数而绘制的两幅不完整的统计图,则喜爱“体育”节目的人数是_____人.16.《九章算术》中记载:今有户不知高、广,竿不知长、短,横之不出四尺,纵之不出二尺,邪之适出.问户高、广、邪各几何?这段话翻译后是:今有门,不知其高、宽,有竿,不知其长、短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为x尺,则可列方程为_____.17.如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒3度的速度旋转,CP与量角器的半圆弧交于点E,第24秒时,点E在量角器上对应的读数是度.18.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是_____.三、解答题(共66分)19.(10分)某中学举办“校园好声音”朗诵大赛,根据初赛成绩,七年级和八年级各选出5名选手组成七年级代表队和八年级代表队参加学校决赛两个队各选出的5名选手的决赛成绩如图所示:(1)根据所给信息填写表格;平均数(分)中位数(分)众数(分)七年级
85
八年级85
100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)若七年级代表队决赛成绩的方差为70,计算八年级代表队决赛成绩的方差,并判断哪个代表队的选手成绩较为稳定.20.(6分)如图,从电线杆离地面12m处向地面拉一条长为13m的钢缆,则地面钢缆固定点A到电线杆底部B的距离为_____.21.(6分)如图,在四边形ABCD中,AB∥DC,边AD与BC不平行(1)若∠A=∠B,求证:AD=BC.(2)已知AD=BC,∠A=70°,求∠B的度数.22.(8分)如图,在平行四边形ABCD中,E、F分别是DA、BC延长线上的点,且∠ABE=∠CDF.求证:(1)△ABE≌△CDF;(2)四边形EBFD是平行四边形.23.(8分)甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.(1)直接写出图中m,a的值;(2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围;(3)当乙车出发多长时间后,两车恰好相距40km?24.(8分)如图,在四边形中,,,,点是的中点.点以每秒1个单位长度的速度从点出发,沿向点运动;同时,点以每秒2个单位长度的速度从点出发,沿向点运动.点停止运动时,点也随之停止运动.求当运动时间为多少秒时,以点,,,为顶点的四边形是平行四边形.25.(10分)已知在△ABC中,AB=1,BC=4,CA=.(1)分别化简4,的值.(2)试在4×4的方格纸上画出△ABC,使它的顶点都在方格的顶点上(每个小方格的边长为1).(3)求出△ABC的面积.26.(10分)我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如由图1可以得到(a+1b)(a+b)=a1+3ab+1b1.请回答下列问题:(1)写出图1中所表示的数学等式:_____________.(1)利用(1)中所得的结论,解决下列问题:已知a+b+c=11,ab+bc+ac=38,求a1+b1+c1的值;(3)图3中给出了若干个边长为a和边长为b的小正方形纸片及若干个长为b、宽为a的长方形纸片.①请按要求利用所给的纸片拼出一个几何图形,并画在所给的方框内,要求所拼的几何图形的面积为1a1+5ab+1b1;②再利用另一种计算面积的方法,可将多项式1a1+5ab+1b1分解因式,即1a1+5ab+1b1=________.
参考答案一、选择题(每小题3分,共30分)1、D【解析】
根据一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0.这种形式叫一元二次方程的一般形式.a叫做二次项系数;b叫做一次项系数;c叫做常数项可得答案.【详解】解:一元二次方程,则它的一次项系数为-2,
所以D选项是正确的.【点睛】本题考查的是一元二次方程,熟练掌握一次项系数是解题的关键.2、C【解析】分析:首先设矩形的两邻边长分别为:3x,4x,可得(3x)2+(4x)2=202,继而求得矩形的两邻边长,则可求得答案.详解:∵矩形的两邻边之比为3:4,∴设矩形的两邻边长分别为:3x,4x,∵对角线长为20,∴(3x)2+(4x)2=202,解得:x=2,∴矩形的两邻边长分别为:12,16;∴矩形的面积为:12×16=1.故选:C.点睛:此题考查了矩形的性质以及勾股定理.此题难度不大,注意掌握方程思想的应用.3、B【解析】
利用勾股定理即可求出斜边长.【详解】由勾股定理得:斜边长为:=1.故选B.【点睛】本题考查了勾股定理;熟练掌握勾股定理,理解勾股定理的内容是解题的关键.4、D【解析】
根据最简二次根式的定义,可得答案.【详解】A.被开方数含能开得尽方的因数=3,故A不符合题意;B.被开方数含分母,故B不符合题意;C.被开方数含能开得尽方的因数=2,故C不符合题意;D.被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D符合题意;故选:D【点睛】此题考查最简二次根式,解题关键在于掌握运算法则5、C【解析】
先作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值.然后证明四边形ABNM′为平行四边形,即可求出MP+NP=M′N=AB=1.【详解】解:如图,作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值,最小值为M′N的长.∵菱形ABCD关于AC对称,M是AB边上的中点,∴M′是AD的中点,又∵N是BC边上的中点,∴AM′∥BN,AM′=BN,∴四边形ABNM′是平行四边形,∴M′N=AB=1,∴MP+NP=M′N=1,即MP+NP的最小值为1,故选:C.【点睛】本题考查的是轴对称−最短路线问题及菱形的性质,熟知两点之间线段最短的知识是解答此题的关键.6、C【解析】
根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、抛掷一枚硬币,落地后正面朝上是随机事件;
B、篮球运动员投篮,投进篮筺是随机事件;
C、自然状态下水从高处流向低处是必然事件;
D、打开电视机,正在播放新闻是随机事件;
故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7、C【解析】试题分析:A、,故A选项错误;B、+不能合并,故B选项错误;C、.故C选项正确;D、=15,故D选项错误.故选C.考点:1.二次根式的乘除法;2.二次根式的性质与化简;3.二次根式的加减法.8、B【解析】试题分析:∵多边形的外角和是360度,多边形的内角和等于它的外角和,则内角和是360度,∴这个多边形是四边形.故选B.考点:多边形内角与外角.视频9、B【解析】
利用平方差公式的结构特征判断即可.【详解】解:下列各式不能用平方差公式法分解因式的是-x2-y2,故选:B.【点睛】本题考查了用平方差公式进行因式分解,熟练掌握是解题的关键.10、A【解析】
根据已知条件可判断出是菱形,则AC,BC,AD,BD这四条线段的大小关系即可判断.【详解】∵O既是AB的中点,又是CD的中点,∴,∴是平行四边形.∵AB⊥CD,∴平行四边形是菱形,∴.故选:A.【点睛】本题主要考查菱形的判定及性质,掌握菱形的判定及性质是解题的关键.二、填空题(每小题3分,共24分)11、2【解析】∵x=2时,符合x>1的条件,∴将x=2代入函数y=−x+4得:y=2.故答案为2.12、.【解析】
根据翻折的性质,及已知的角度,可得△AEB’为等边三角形,再由四边形ABCD为平行四边形,且∠B=60°,从而知道B’,A,B三点在同一条直线上,再由AC是对称轴,所以AC垂直且平分BB’,AB=AB’=AE=3,求AE边上的高,从而得到面积.【详解】解:∵△CDE恰为等边三角形,∴∠AEB’=∠DEC=60°,∠D=∠B=∠B’=60°,∴△AEB’为等边三角形,由四边形ABCD为平行四边形,且∠B=60°,∴∠BAD=120°,所以所以∠B’AE+∠DAB=180°,∴B’,A,B三点在同一条直线上,∴AC是对折线,∴AC垂直且平分BB’,∴AB=AB’=AE=3,AE边上的高,h=CD×sin60°=,∴面积为.【点睛】本题有一个难点,题目并没有说明B’,A,B三点在同一条直线上,虽然图形是一条直线,易当作已知条件,这一点需注意.13、2【解析】
根据题意,可设;把,代入即可求得k的值,从而求得函数解析式;代入,即可求得x的值.【详解】设,把,代入,得:解得:则函数的解析式为:即把代入,解得:故答案为:2【点睛】本题考查了正比例函数以及待定系数法求函数解析式,稍有难度,熟练掌握正比例函数的概念和待定系数法是解答本题的关键.14、有两个角相等的三角形是等腰三角形【解析】
根据逆命题的条件和结论分别是原命题的结论和条件写出即可.【详解】∵原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,∴命题“等腰三角形的两个底角相等”的逆命题是“有两个角相等三角形是等腰三角形”.故答案为:有两个角相等的三角形是等腰三角形.【点睛】本题考查命题与逆命题,对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.15、1【解析】试题分析:根据喜爱新闻类电视节目的人数和所占的百分比,即可求出总人数;根据总人数和喜爱动画类电视节目所占的百分比,求出喜爱动画类电视节目的人数,进一步利用减法可求喜爱“体育”节目的人数.5÷1%=50(人),50×30%=15(人),50﹣5﹣15﹣20=1(人).故答案为1.考点:条形统计图;扇形统计图.16、x1=(x﹣4)1+(x﹣1)1【解析】
根据题中所给的条件可知,竿斜放就恰好等于门的对角线长,可与门的宽和高构成直角三角形,运用勾股定理可求出门高、宽、对角线长.【详解】解:根据题意可列方程为x1=(x﹣4)1+(x﹣1)1,故答案为:x1=(x﹣4)1+(x﹣1)1.【点睛】本题考查勾股定理的运用,正确运用勾股定理,将数学思想运用到实际问题中是解答本题的关键,难度一般.17、144【解析】
连接OE,∵∠ACB=90°,∴A,B,C在以点O为圆心,AB为直径的圆上,∴点E,A,B,C共圆,∵∠ACE=3°×24=72°,∴∠AOE=2∠ACE=144°,∴点E在量角器上对应的读数是:144°,故答案为144.18、(0,)【解析】
作点A关于y轴的对称点A',连接A'D,此时△ADE的周长最小值为AD+DA'的长;E点坐标即为直线A'D与y轴的交点;【详解】解:作点A关于y轴的对称点A',连接A'D,此时△ADE的周长最小值为AD+DA'的长;∵A的坐标为(﹣4,5),D是OB的中点,∴D(﹣2,0),由对称可知A'(4,5),设A'D的直线解析式为y=kx+b,∴,∴,∴,∴E(0,);故答案为(0,);【点睛】本题考查矩形的性质,线段的最短距离;能够利用轴对称求线段的最短距离,将AE+DE的最短距离转化为线段A'D的长是解题的关键.三、解答题(共66分)19、(1)填表见解析;(2)七年级代表队成绩好些;(3)七年级代表队选手成绩较为稳定.【解析】
(1)根据平均数、众数和中位数的定义分别进行解答即可;(2)根据表格中的数据,可以结合两个年级成绩的平均数和中位数,说明哪个队的决赛成绩较好;(3)根据方差公式先求出八年级的方差,再根据方差的意义即可得出答案.【详解】(1)八年级的平均成绩是:(75+80+85+85+100)÷5=85(分);85出现了2次,出现的次数最多,则众数是85分;把八年级的成绩从小到大排列,则中位数是80分;填表如下:平均数(分)中位数(分)众数(分)初二858585初三8580100(2)七年级代表队成绩好些.∵两个队的平均数都相同,七年级代表队中位数高,∴七年级代表队成绩好些.(3)S八年级2=[(70-85)2+(100-85)2+(100-85)2+(75-85)2+(80-85)2]=160;∵S七年级2<S八年级2,∴七年级代表队选手成绩较为稳定.【点睛】本题考查了方差:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.也考查了中位数和众数.20、5m.【解析】
根据勾股定理即可得到结果.【详解】解:在Rt△ABC中BC=12,AC=13,AB2+BC2=AC2∴AB2=AC2-BC2=132-122=25∴AB=5答:地面钢缆固定点A到电线杆底部B的距离为5米.考点:本题考查勾股定理的应用点评:解答本题的关键是熟练掌握勾股定理:直角三角形的两直角边的平方和等于斜边的平方.21、(1)证明见解析;(2)∠B=70°.【解析】
(1)过C作CE∥AD于点E,可证明四边形ADCE是平行四边形,根据平行四边形的性质可得AD=CE,根据AD∥CE,可得∠A=∠CEB,根据等量代换可得∠CEB=∠B,进而得到CE=BC,从而可得AD=BC;(2)过C作CE∥AD,可证明四边形ADCE是平行四边形,根据平行四边形的性质可得AD=CE,再由条件AD=BC可得CE=BC,根据等边对等角可得∠B=∠CEB,再根据平行线的性质可得∠A=∠CEB,利用等量代换可得∠B=∠A.【详解】(1)证明:过C作CE∥AD于点E,∵AB∥DC,CE∥AD∴四边形ADCE是平行四边形,∴AD=CE,∵AD∥CE,∴∠A=∠CEB,∵∠A=∠B,∴∠CEB=∠B,∴CE=CB,∴AD=CB;(2)过C作CE∥AD于点E,∵AB∥DC,CE∥AD∴四边形ADCE是平行四边形,∴AD=CE,∵AD=BC,∴CE=CB,∴∠B=∠CEB,∵AD∥CE,∴∠A=∠CEB,∴∠B=∠A=70°.【点睛】本题主要考查平行四边形的判定及性质,等腰三角形的性质,掌握平行四边形的性质是解题的关键.22、(1)见解析;(2)见解析.【解析】
(1)根据条件,由ASA即可得出△ABE≌△CDF;(2)由全等三角形的性质得出AE=CF,由平行四边形的性质得出AD∥BC,AD=BC,证出DE=BF,即可得出四边形EBFD是平行四边形.【详解】证明:(1)∵四边形ABD是平行四边形,∴AB=CD,∠BAD=∠DCB,∴∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(ASA);(2)∵△ABE≌△CDF,∴AE=CF(全等三角形对应边相等),∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴AD+AE=BC+CF,即DE=BF,∴四边形EBFD是平行四边形(一组对边平行且相等的四边形是平行四边形).【点睛】本题主要考查了平行四边形的判定与性质、全等三角形的判定与性质等知识;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.23、(1)m=1,a=2,(2);(3)小时或小时.【解析】
(1)根据“路程÷时间=速度”由函数图象就可以求出甲的速度求出a的值和m的值;(2)由分段函数当0≤x≤1,1<x≤1.5,1.5<x≤7由待定系数法就可以求出结论;(3)先求出乙车行驶的路程y与时间x之间的解析式,由解析式之间的关系建立方程求出其解即可.【详解】(1)由题意,得m=1.5-0.5=1.13÷(3.5-0.5)=2,∴a=2.答:a=2,m=1;(2)当0≤x≤1时设y与x之间的函数关系式为y=k1x,由题意,得2=k1,∴y=2x当1<x≤1.5时,y=2;当1.5<x≤7设y与x之间的函数关系式为y=k2x+b,由题意,得,解得:,∴y=2x-3.∴;(3)设乙车行驶的路程y与时间x之间的解析式为y=k3x+b3,由题意,得解得:,∴y=80x-4.当2x-3-2=80x-4时,解得:x=.当2x-3+2=80x-4时,解得:x=.−2=,−2=.答:乙车行驶小时或小时,两车恰好相距2km.【点睛】本题考出了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一次函数与一元一次方程的运用,解答时求出一次函数的解析式是关键.24、t为2或秒【解析】
由已知以点P,Q,E,D为顶点的四边形是平行四边形有两种情况,(1)当Q运动到E和C之间,(2)当Q运动到E和B之间,根据平行四边形的判定,由AD∥BC,所以当PD=QE时为平行四边形.根据此设运动时间为t,列出关于t的方程求解.【详解】解:由题意可知,AP=t,CQ=2t,CE=BC=8∵AD∥BC,∴当PD=EQ时,以点P,Q,E,D为顶点的四边形是平行四边形.①当2t<8,即t<4时,点Q在C,E之间,如图甲.此时,PD=AD-AP=6-t,EQ=CE-CQ=8-2t,由6-t=8-2t,得t=2;②当8<2t<16且t<6,即4<t<6时,点Q在B,E之间,如图乙.此时,PD=AD-AP=6-t,EQ=CQ-CE=2t-8,由6-t
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- idc租赁服务合同范例
- 存货质押合同范本
- 企业员工招聘合同范本
- 农村安装路灯合同范例
- 兼职配音协议合同范本
- 照明灯具采购合同范本
- 工业固体废物处置合同范本
- 冰箱保养合同范本
- 天籁侗歌苗寨传
- 2025年度国际知识产权转让合同范本(含专利保护)
- 施工周报表(标准模版)
- 4.5MWp分布式光伏项目主要设备材料清单(建筑工程安装工程)
- von frey丝K值表完整版
- 云南省普通初中学生成长记录模板-好ok
- SB/T 10415-2007鸡粉调味料
- 考古绘图基础
- GB/T 32574-2016抽水蓄能电站检修导则
- 《社会主义市场经济理论(第三版)》第十三章社会主义市场经济标准论
- 变更索赔案例分析
- 过敏性休克的急救及处理流程教材课件(28张)
- 《花婆婆》儿童绘本故事
评论
0/150
提交评论