重庆合川区南屏中学2024年八年级数学第二学期期末学业水平测试模拟试题含解析_第1页
重庆合川区南屏中学2024年八年级数学第二学期期末学业水平测试模拟试题含解析_第2页
重庆合川区南屏中学2024年八年级数学第二学期期末学业水平测试模拟试题含解析_第3页
重庆合川区南屏中学2024年八年级数学第二学期期末学业水平测试模拟试题含解析_第4页
重庆合川区南屏中学2024年八年级数学第二学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆合川区南屏中学2024年八年级数学第二学期期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列命题,其中正确的有()①平行四边形的两组对边分别平行且相等②平行四边形的对角线互相垂直平分③平行四边形的对角相等,邻角互补④平行四边形只有一组对边相等,一组对边平行A.1个 B.2个 C.3个 D.4个2.已知正比例函数y=﹣2x的图象经过点(a,2),则a的值为()A. B.﹣1 C.﹣ D.﹣43.矩形各内角的平分线能围成一个()A.矩形 B.菱形 C.等腰梯形 D.正方形4.若一个三角形三个内角度数的比为,且最大的边长为,那么最小的边长为()A.1 B. C.2 D.5.如图,在▱ABCD中,AB=5,AD=6,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为()A.3 B. C. D.46.甲从商贩A处购买了若干斤西瓜,又从商贩B处购买了若干斤西瓜.A、B两处所购买的西瓜重量之比为3:2,然后将买回的西瓜以从A、B两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为()A.商贩A的单价大于商贩B的单价B.商贩A的单价等于商贩B的单价C.商版A的单价小于商贩B的单价D.赔钱与商贩A、商贩B的单价无关7.某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S(吨)与时间t(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是()A.4小时 B.4.4小时 C.4.8小时 D.5小时8.已知点P的坐标为P-5,3,则点PA.一 B.二 C.三 D.四9.如图,□ABCD中,∠C=108°,BE平分∠ABC,则∠AEB等于()A.18° B.36° C.72° D.108°10.计算8×2的结果是()A.10 B.4C.6 D.2二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,AO=2,BO=3,BC=4.将正方形沿箭头方向推,使点D落在y轴正半轴上点D’处,则点C的对应点C’的坐标为____.12.对分式和进行通分,它们的最简公分母是________.13.在平面直角坐标系xOy中,点A、B分别在x轴、y轴的正半轴上运动,点M为线段AB的中点.点D、E分别在x轴、y轴的负半轴上运动,且DE=AB=1.以DE为边在第三象限内作正方形DGFE,则线段MG长度的最大值为_____.14.已知直角三角形的周长为14,斜边上的中线长为3.则直角三角形的面积为________.15.如图,小芳和爸爸正在散步,爸爸身高1.8m,他在地面上的影长为2.1m.若小芳比他爸爸矮0.3m,则她的影长为________m.16.如图,在中,D是AB上任意一点,E是BC的中点,过C作,交DE的延长线于F,连BF,CD,若,,,则_________.17.如图,在△ABC中,AB=3cm,BC=5cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于_______cm.18.如图,直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-2,则关于x的不等式-x+m>nx+4n的解集为____________.三、解答题(共66分)19.(10分)(知识背景)据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦就等于5,后人概括为“勾三、股四、弦五”.像3、4、5这样为三边长能构成直角三角形的三个正整数,称为勾股数.(应用举例)观察3,4,5;5,12,13;7,24,25;…可以发现这些勾股数的勾都是奇数,且从3起就没有间断过,并且勾为3时,股,弦;勾为5时,股,弦;请仿照上面两组样例,用发现的规律填空:(1)如果勾为7,则股24=弦25=(2)如果勾用(,且为奇数)表示时,请用含有的式子表示股和弦,则股=,弦=.(解决问题)观察4,3,5;6,8,10;8,15,17;…根据应用举例获得的经验进行填空:(3)如果是符合同样规律的一组勾股数,(表示大于1的整数),则,,这就是古希腊的哲学家柏拉图提出的构造勾股数组的公式.(4)请你利用柏拉图公式,补全下面两组勾股数(数据从小到大排列)第一组:、24、:第二组:、、1.20.(6分)如图,直线与直线交于点,直线经过点.(1)求直线的函数表达式;(2)直接写出方程组的解______;(3)若点在直线的下方,直线的上方,写出的取值范围______.21.(6分)已知:如图,在菱形ABCD中,点E,O,F分别是边AB,AC,AD的中点,连接CE、CF、OE、OF.(1)求证:△BCE≌△DCF;(2)当AB与BC满足什么条件时,四边形AEOF正方形?请说明理由.22.(8分)(1)计算:(2)解方程:-1=23.(8分)为积极响应“弘扬传统文化”的号召,某学校组织全校1200名学生进行经典诗词诵读活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取40名学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图如图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表如下:一周诗词诵背数量3首4首5首6首7首8首人数13561015请根据调查的信息分析:(1)求活动启动之初学生“一周诗词诵背数量”的中位数;(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;(3)选择适当的统计量,至少从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.24.(8分)学校准备从甲乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如下表:选手表达能力阅读理解综合素质汉字听写甲85788573乙73808283(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁;(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们20%、10%、30%和40%的权重,请分别计算两名选手的最终成绩,从他们的这一成绩看,应选派谁.25.(10分)平行四边形ABCD在平面直角坐标系中的位置如图所示,已知AB=8,AD=6,∠BAD=60°,点A的坐标为(-2,0).求:(1)点C的坐标;(2)直线AC与y轴的交点E的坐标.26.(10分)(10分)已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.试探究下列问题:(1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图3,在(2)的基础上,连接AE和BF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

根据平行四边形的性质判断即可.【详解】解:①平行四边形的两组对边分别平行且相等,正确;②平行四边形的对角线互相平分,但不一定垂直,错误;③平行四边形的对角相等,邻角互补,正确;④平行四边形两组对边分别平行且相等,不是只有一组相等,一组平行,错误,正确的有2个.故选B.【点睛】本题考查了平行四边形的性质,平行四边形的两组对边分别平行且相等,对角线互相平分,对角相等,邻角互补,熟练掌握平行四边形的性质是解题的关键.2、B【解析】

把点(a,2)代入y=﹣2x得到关于a的一元一次方程,解之即可.【详解】解:把点(a,2)代入y=﹣2x得:2=﹣2a,解得:a=﹣1,故选:B.【点睛】本题考查了一次函数图象上点的坐标特征,正确掌握代入法是解题的关键.3、D【解析】

根据矩形的性质及角平分线的性质进行分析即可.【详解】矩形的四个角平分线将矩形的四个角分成8个45°的角,因此形成的四边形每个角是90°又知两条角平分线与矩形的一边构成等腰直角三角形,所以这个四边形邻边相等,根据有一组邻边相等的矩形是正方形,得到该四边形是正方形.故选D.【点睛】此题是考查正方形的判别方法,判别一个四边形为正方形主要根据正方形的概念,途经有两种:①先说明它是矩形,再说明有一组邻边相等;②先说明它是菱形,再说明它有一个角为直角4、B【解析】

先求出三角形是直角三角形,再根据含30°角的直角三角形的性质得出即可.【详解】∵三角形三个内角度数的比为1:2:3,三角形的内角和等于180°,∴此三角形的三个角的度数是30°,60°,90°,即此三角形是直角三角形,∵三角形的最大的边长为2,∴三角形的最小的边长为×2=,故选B.【点睛】本题考查了三角形的内角和定理和含30°角的直角三角形的性质,能求出三角形是直角三角形是解此题的关键.5、D【解析】

由点B恰好与点C重合,可知AE垂直平分BC,根据勾股定理计算AE的长即可.【详解】解:∵翻折后点B恰好与点C重合,∴AE⊥BC,BE=CE,∵BC=AD=6,∴BE=3,∴AE==4,故选D.【点睛】本题考查了翻折变换,平行四边形的性质,勾股定理,根据翻折特点发现AE垂直平分BC是解决问题的关键.6、A【解析】

设商贩A处西瓜的单价为a,商贩B处西瓜的单价为b,根据题意列出不等式进行求解即可得.【详解】设商贩A处西瓜的单价为a,商贩B处西瓜的单价为b,则甲的利润=总售价﹣总成本=×5﹣(3a+2b)=0.5b﹣0.5a,赔钱了说明利润<0,∴0.5b﹣0.5a<0,∴a>b,故选A.【点睛】本题考查了不等式的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式.7、B【解析】分析:由图中可以看出,2小时调进物资30吨,调进物资共用4小时,说明物资一共有60吨;2小时后,调进物资和调出物资同时进行,4小时时,物资调进完毕,仓库还剩10吨,说明调出速度为:(60-10)÷2吨,需要时间为:60÷25时,由此即可求出答案.解答:解:物资一共有60吨,调出速度为:(60-10)÷2=25吨,需要时间为:60÷25=2.4(时)∴这批物资从开始调进到全部调出需要的时间是:2+2.4=4.4小时.8、B【解析】

应先判断出所求的点的横纵坐标的符号,进而判断其所在的象限.【详解】解:∵点P的坐标为P∴点P在第二象限故选:B【点睛】本题主要考查了平面直角坐标系中第二象限的点的坐标的符号特点.牢记四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).9、B【解析】

首先根据平行四边形的性质,得出∠ABC的度数,又由BE平分∠ABC,得出∠ABE=∠CBE,∠AEB和∠CBE是内错角,相等,即可得出∠AEB.【详解】解:∵□ABCD中,∠C=108°,∴∠ABC=180°-108°=72°又∵BE平分∠ABC,∴∠ABE=∠CBE=36°又∵∠AEB=∠CBE∴∠AEB=36°故答案为B.【点睛】此题主要考查利用平行四边形的性质求角的度数,熟练掌握即可解题.10、B【解析】试题解析:8×故选B.考点:二次根式的乘除法.二、填空题(每小题3分,共24分)11、(5,)【解析】

由题知从正方形变换到平行四边形时,边的长度没变,从而求出即可【详解】由题知从正方形变换到平行四边形时,AD’=AD=BC=4,D’C’=AB=5,∵AO=2,根据勾股定理,则OD’=,则D’(0,),故C’的坐标为(5,)【点睛】熟练掌握图形变化中的不变边和勾股定理计算是解决本题的关键12、【解析】

根据确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母即可得出答案.【详解】解:分式和的最简公分母是,故答案为:.【点睛】本题考查了最简公分母的定义:通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.13、1+2【解析】

取DE的中点N,连结ON、NG、OM.根据勾股定理可得.在点M与G之间总有MG≤MO+ON+NG(如图1),M、O、N、G四点共线,此时等号成立(如图2).可得线段MG的最大值.【详解】如图1,取DE的中点N,连结ON、NG、OM.∵∠AOB=90°,∴OM=AB=2.同理ON=2.∵正方形DGFE,N为DE中点,DE=1,∴.在点M与G之间总有MG≤MO+ON+NG(如图1),如图2,由于∠DNG的大小为定值,只要∠DON=∠DNG,且M、N关于点O中心对称时,M、O、N、G四点共线,此时等号成立,∴线段MG取最大值1+2.故答案为:1+2.【点睛】此题考查了直角三角形的性质,勾股定理,四点共线的最值问题,得出M、O、N、G四点共线,则线段MG长度的最大是解题关键.14、2【解析】

由∠ACB=90°,CD是斜边上的中线,求出AB=1,根据AB+AC+BC=14,求出AC+BC,根据勾股定理得出AC2+BC2=AB2=31推出AC•BC=14,根据SAC•BC即可求出答案.【详解】如图,∵∠ACB=90°,CD是斜边上的中线,∴AB=2CD=1.∵AB+AC+BC=14,∴AC+BC=8,由勾股定理得:AC2+BC2=AB2=31,∴(AC+BC)2﹣2AC•BC=31,∴AC•BC=14,∴SAC•BC=2.故答案为:2.【点睛】本题考查了对直角三角形斜边上的中线,勾股定理,三角形的面积等知识点的理解和掌握,能根据性质求出AC•BC的值是解答此题的关键.15、1.2.【解析】

根据实物与影子的比相等可得小芳的影长.【详解】∵爸爸身高1.8m,小芳比他爸爸矮0.3m,

∴小芳高1.5m,

设小芳的影长为xm,

∴1.5:x=1.8:2.1,

解得x=1.2,

小芳的影长为1.2m.【点睛】本题考查了平行投影的知识,解题的关键是理解阳光下实物的影长与影子的比相等.16、1【解析】

证明CF∥DB,CF=DB,可得四边形CDBF是平行四边形,作EM⊥DB于点M,解直角三角形即可.【详解】解:∵CF∥AB,

∴∠ECF=∠EBD.

∵E是BC中点,

∴CE=BE.

∵∠CEF=∠BED,

∴△CEF≌△BED(ASA).

∴CF=BD.

∴四边形CDBF是平行四边形.

作EM⊥DB于点M,

∵四边形CDBF是平行四边形,,

∴BE=,DF=2DE,

在Rt△EMB中,EM2+BM2=BE2且EM=BM

∴EM=1,在Rt△EMD中,

∵∠EDM=30°,

∴DE=2EM=2,

∴DF=2DE=1.

故答案为:1.【点睛】本题考查平行四边形的判定和性质、全等三角形的判定和性质、勾股定理、直角三角形30度角性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,17、8【解析】由折叠的性质知,AE=CE,∴△ABE的周长=AB+BE+AE=AB+BE+CE=AB+BC=3+5=8cm.18、<-1【解析】

根据图象求出不等式的解集即可.【详解】由图象可得当时,直线y=-x+m的图象在直线y=nx+4n(n≠0)的图象的上方故可得关于x的不等式-x+m>nx+4n的解集为故答案为:<-1.【点睛】本题考查了解一元一次不等式的问题,掌握用图象法解一元一次不等式是解题的关键.三、解答题(共66分)19、(1);;(2);;(3);;(4)10;26;12;2;【解析】

(1)依据规律可得,如果勾为7,则股24=,弦25=;

(2)如果勾用n(n≥3,且n为奇数)表示时,则股=,弦=;

(3)根据规律可得,如果a,b,c是符合同样规律的一组勾股数,a=2m(m表示大于1的整数),则b=m2-1,c=m2+1;

(4)依据柏拉图公式,若m2-1=24,则m=5,2m=10,m2+1=26;若m2+1=1,则m=6,2m=12,m2-1=2.【详解】解:(1)依据规律可得,如果勾为7,则股24=,弦25=;

故答案为:;;

(2)如果勾用n(n≥3,且n为奇数)表示时,则股=,弦=;

故答案为:;;(3)根据规律可得,如果a,b,c是符合同样规律的一组勾股数,a=2m(m表示大于1的整数),则b=m2-1,c=m2+1;

故答案为:m2-1,m2+1;

(4)依据柏拉图公式,

若m2-1=24,则m=5,2m=10,m2+1=26;

若m2+1=1,则m=6,2m=12,m2-1=2;

故答案为:10、26;12、2.【点睛】此题主要考查了勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.20、(1);(2);(3).【解析】

(1)求出点C坐标,由待定系数法可得直线的函数表达式;(2)方程组的解即为交点C横纵坐标的值;(3)由题意可知当,,根据直线的表达式求出即可.【详解】解:(1)当时,,解得,即点坐标为;由与直线交于点,直线经过点,得,解得,直线的函数表达式为;(2)方程组的解即为交点C横纵坐标的值,点坐标为,所以方程组解为;(3)由题意可知当,,所以.【点睛】本题考查了一次函数的解析式及图像,熟练掌握待定系数法,将题目与图像相结合是解题的关键.21、(1)证明见解析;(2)AB⊥BC时,四边形AEOF正方形.【解析】

(1)根据中点的定义及菱形的性质可得BE=DF,∠B=∠D,BC=CD,利用SAS即可证明△BCE≌△DCF;(2)由中点的定义可得OE为△ABC的中位线,根据三角形中位线的性质可得OE//BC,根据正方形的性质可得∠AEO=90°,根据平行线的性质可得∠ABC=∠AEO=90°,即可得AB⊥BC,可得答案.【详解】(1)∵四边形ABCD是菱形,点E,O,F分别是边AB,AC,AD的中点,∴AB=BC=CD=AD,∠B=∠D,∵点E、F分别是边AB、AD的中点,∴BE=AB,DF=AD,∴BE=DF,在△BCE和△DCF中,,∴△BCE≌△DCF.(2)AB⊥BC,理由如下:∵四边形AEOF是正方形,∴∠AEO=90°,∵点E、O分别是边AB、AC的中点,∴OE为△ABC的中位线,∴OE//BC,∴∠B=∠AEO=90°,∴AB⊥BC.【点睛】本题考查菱形的性质、全等三角形的判定及正方形的性质,菱形的四条边都相等,对角相等;正方形的四个角都是直角;熟练掌握菱形和正方形的性质是解题关键.22、(1)3+2;(2)原方程无解【解析】

(1)利用乘法公式展开,然后合并即可;(2)先去分母把方程化为(x-2)2-(x+2)(x-2)=16,然后解整式方程后进行检验确定原方程的解.【详解】解:(1)原式=5+5-3-2=3+2;(2)去分母得(x-2)2-(x+2)(x-2)=16,解得x=-2,检验:当x=-2时,(x+2)(x-2)=0,则x=-2为原方程的增根,所以原方程无解.【点睛】本题考查了二次根式的混合运算及分式方程的解法:先进行二次根式的乘法运算,再合并同类二次根式即可.解分式方程最关键的是把分式方程化为整式方程.23、(1)6;(2)930人;(3)经典诗词诵背系列活动效果好,理由见解析【解析】

(1)根据中位数的定义进行解答,即中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);

(2)用总人数乘以大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数所占的百分比即可;

(3)根据活动初的平均数、中位数与活动后的平均数、中位数进行比较,即可得出答案.【详解】(1)∵把这些数从小到大排列,最中间的数是第20和21个数的平均数,则中位数是(首);(2)根据题意得:(人),估计大赛后一个月该校学生一周诗词背6首(含6首)以上的人数为930人.(3)①活动初40名学生平均背诵首数为(首),活动1个月后40名学生平均背诵首数为(首);②活动初学生一周诗词诵背数量中位数为6,活动一个月后学生一周诗词诵背数量中位数为7;根据以上数据分析,该校经典诗词诵背系列活动效果好.【点睛】考查条形统计图、用样本估计总体、统计量的选择,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24、(1)乙的平均成绩是79.5(分),应选派甲;(2)甲的最终成绩:79.5(分),乙的最终成绩:80.4(分),应选派乙.【解析】

(1)求出乙的平均成绩,与甲作比较即可;(2)分别计算甲乙的加权平均数,得到最终成绩,再进行比较即可.【详解】解:(1)乙的平均成绩:(73+80+82+83)=79.5(分),∵甲的平均成绩为80.25,∴应选派甲;(2)甲的最终成绩:85×20%+78×10%+85×30%+73×40%=79.5(分)乙的最终成绩:73×20%+80×10%+82×30%+83×40%=80.4(分)∴应选派乙.【点睛】本题考查了算术平均数和加权平均数,熟练掌握求算术平均数和加权平均数的方法是解题的关键.25、(1)C(3,);(1)E(0,)【解析】

(1)过C作CH⊥x轴于点H,利用平行四边形的性质结合直角三角形的性质得出C点坐

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论