河北省张家口桥东区五校联考2024年八年级数学第二学期期末质量检测模拟试题含解析_第1页
河北省张家口桥东区五校联考2024年八年级数学第二学期期末质量检测模拟试题含解析_第2页
河北省张家口桥东区五校联考2024年八年级数学第二学期期末质量检测模拟试题含解析_第3页
河北省张家口桥东区五校联考2024年八年级数学第二学期期末质量检测模拟试题含解析_第4页
河北省张家口桥东区五校联考2024年八年级数学第二学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省张家口桥东区五校联考2024年八年级数学第二学期期末质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,在4×4的正方形网格中,△ABC的顶点都在格点上,下列结论错误的是()A.AB=5 B.∠C=90° C.AC=2 D.∠A=30°2.如图,在△ABC中,点D、E分别是AB、AC的中点、DE=3,那么BC的长为()A.4 B.5 C.6 D.73.如图,丝带重叠的部分一定是()A.菱形 B.矩形 C.正方形 D.都有可能4.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为()A.10cm B.13cm C.15cm D.24cm5.的三边长分别为,下列条件:①;②;③;④其中能判断是直角三角形的个数有()A.个 B.个 C.个 D.个6.直线y=x+1与y=–2x–4交点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.某中学书法兴趣小组10名成员的年龄情况如下表,则该小组成员年龄的众数和中位数分别是()年龄/岁14151617人数3421A.15,15 B.16,15 C.15,17 D.14,158.如图,菱形ABCD的对角线AC、BD交于点O,E、F分别是AD、CD边的中点,连接EF,若,,则菱形ABCD的面积是A.24 B.20 C.12 D.69.如图,在▱ABCD中,对角线AC、BD相交于点O,AB=3,△ABO的周长比△BOC的周长小1,则▱ABCD的周长是()A.10 B.12 C.14 D.1610.如图所示,四边形OABC是矩形,△ADE是等腰直角三角形,∠ADE=90°,点A,D在x轴的正半轴上,点C在y轴的正半轴上,点B、E在反比例函数y=(x>0)的图象上.△ADE的面积为,且AB=DE,则k值为()A.18 B. C. D.16二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,已知顶点的坐标分别为,且是由旋转得到.若点在上,点在轴上,要使四边形为平行四边形,则满足条件的点的坐标为______.12.分解因时:=__________13.八年级(1)班四个绿化小组植树的棵数如下:8,8,10,x.已知这组数据的众数和平均数相等,那么这组数据的方差是_____.14.如图,正方形ABCD的边长为4,P为对角线AC上一点,且CP=3,PE⊥PB交CD于点E,则PE=____________.15.一组数据1,3,1,5,2,a的众数是a,这组数据的中位数是_________.16.一组数据5,7,2,5,6的中位数是_____.17.不等式的正整数解的和______;18.如图,在边长为的菱形中,,是边的中点,是对角线上的动点,连接,,则的最小值______.三、解答题(共66分)19.(10分)如图,在平直角坐标系xOy中,直线与反比例函数的图象关于点(1)求点P的坐标及反比例函数的解析式;(2)点是x轴上的一个动点,若,直接写出n的取值范围.20.(6分)如图,在平面直角坐标系xOy中,已知直线AB经过点A(﹣2,0),与y轴的正半轴交于点B,且OA=2OB.(1)求直线AB的函数表达式;(2)点C在直线AB上,且BC=AB,点E是y轴上的动点,直线EC交x轴于点D,设点E的坐标为(0,m)(m>2),求点D的坐标(用含m的代数式表示);(3)在(2)的条件下,若CE:CD=1:2,点F是直线AB上的动点,在直线AC上方的平面内是否存在一点G,使以C,G,F,E为顶点的四边形是菱形?若存在,请求出点G的坐标;若不存在,请说明理由.21.(6分)某住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA=13米,且AB⊥BC,求这块草坪的面积.22.(8分)如图,抛物线与轴交于,(在的左侧),与轴交于点,抛物线上的点的横坐标为3,过点作直线轴.(1)点为抛物线上的动点,且在直线的下方,点,分别为轴,直线上的动点,且轴,当面积最大时,求的最小值;(2)过(1)中的点作,垂足为,且直线与轴交于点,把绕顶点旋转45°,得到,再把沿直线平移至,在平面上是否存在点,使得以,,,为顶点的四边形为菱形?若存在直接写出点的坐标;若不存在,说明理由.23.(8分)(1)解不等式组(2)先化简分式,然后在0,1,2,3中选一个你认为合适的a值,代入求值。24.(8分)(1)因式分解:(x²+4)²-16x²;(2)先化简.再从-1,1,2选取一个合适的数代入求值.25.(10分)如图,矩形ABCD和正方形ECGF,其中E、H分别为AD、BC中点,连结AF、HG、AH.(1)求证:;(2)求证:;26.(10分)如图,直线y=x+9分别交x轴、y轴于点A、B,∠ABO的平分线交x轴于点C.(1)求点A、B、C的坐标;(2)若点M与点A、B、C是平行四边形的四个顶点,求CM所在直线的解析式.

参考答案一、选择题(每小题3分,共30分)1、D【解析】

首先根据每个小正方形的边长为1,结合勾股定理求出AB、AC、BC的长,进而判断A、C的正误;再判断较短的两边的平方和与较长边的平方是否相等,进而可判断B的正误;在上步提示的基础上,判断BC与AB是否存在二倍关系,进而即可判断D的正误.【详解】∵每个小正方形的边长为1,根据勾股定理可得:AB=5,AC=2,BC=.故A、C正确;∵2+(2)2=52,∴△ABC是直角三角形,∴∠C=90°.故B正确;∵∠C=90°,AC=2BC,而非AB=2BC,∴∠A≠30°.故D错误.故选D.【点睛】本题考查的是三角形,熟练掌握三角形是解题的关键.2、C【解析】

根据三角形的中位线定理“三角形的中位线等于第三边的一半”,有DE=BC,从而求出BC.【详解】解:∵D、E分别是AB、AC的中点.

∴DE是△ABC的中位线,

∴BC=2DE,

∵DE=3,

∴BC=2×3=1.

故选:C.【点睛】本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.3、A【解析】

首先可判断重叠部分为平行四边形,且两条丝带宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形.【详解】解:过点A作AE⊥BC于E,AF⊥CD于F,因为两条彩带宽度相同,所以AB∥CD,AD∥BC,AE=AF.∴四边形ABCD是平行四边形.∵S▱ABCD=BC•AE=CD•AF.∴BC=CD,∴四边形ABCD是菱形.故选:A.【点睛】本题考查了平行四边形的判定和性质以及菱形的判定和性质,利用平行四边形的面积公式得到一组邻边相等是解题关键.4、B【解析】

根据正方形的面积可用对角线进行计算解答即可.【详解】解:因为正方形AECF的面积为50cm2,所以AC=cm,因为菱形ABCD的面积为120cm2,所以BD==24cm,所以菱形的边长==13cm.故选:B.【点睛】此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.5、C【解析】

判定直角三角形的方法有两个:一是有一个角是的三角形是直角三角形;二是根据勾股逆定理判断,即三角形的三边满足,其中边c为斜边.【详解】解:由三角形内角和定理可知,①中,,,,能判断是直角三角形,①正确,③中,,,不是直角三角形,③错误;②中化简得即,边b是斜边,由勾股逆定理是直角三角形,②正确;④中经计算满足,其中边c为斜边,由勾股逆定理是直角三角形,④正确,所以能判断是直角三角形的个数有3个.故答案为:C【点睛】本题考查了直角三角形的判定,主要从边和角两方面去考虑,即有一个角是直角或三边满足,灵活运用直角三角形边角的特殊性质取判定直角三角形是解题的关键.6、C【解析】试题分析:直线y=x+1的图象经过一、二、三象限,y=–2x–4的图象经过二、三、四象限,所以两直线的交点在第三象限.故答案选C.考点:一次函数的图象.7、A【解析】

众数:出现次数最多的数;中位数:从小到大排列,中间位置的数;【详解】众数:出现次数最多的数;年龄为15岁的人数最多,故众数为15;中位数:从小到大排列,中间位置的数;14,14,14,15,15,15,15,16,16,17;中间位置数字为15,15,所以中位数是(15+15)÷2=15故选A【点睛】本题考查了众数和中位数,属于基本题,熟练掌握相关概念是解答本题的关键.8、A【解析】

根据EF是的中位线,根据三角形中位线定理求的AC的长,然后根据菱形的面积公式求解.【详解】解:、F分别是AD,CD边上的中点,即EF是的中位线,,则.故选:A.【点睛】本题考查了三角形的中位线定理和菱形的面积公式,理解中位线定理求的AC的长是关键.9、C【解析】

根据平行四边形的性质可知,平行四边形的对角线互相平分,由于△AOB的周长比△BOC的周长小1,则BC比AB大1,所以可以求出BC,进而求出周长.【详解】∵△AOB的周长比△BOC的周长小1,∴BC﹣AB=1.∵AB=3,∴BC=4,∴AB+BC=7,∴平行四边形的周长为2.故选C.【点睛】本题考查了平行四边的性质:平行四边形的两组对边分别相等且平行四边形的对角线互相平分.10、B【解析】

设B(m,5),则E(m+3,3),因为B、E在y=上,则有5m=3m+9=k,由此即可解决问题;【详解】解:∵△ADE是等腰直角三角形,面积为,∴AD=DE=3,∵AB=DE,∴AB=5,设B(m,5),则E(m+3,3),∵B、E在y=上,则有5m=3m+9=k∴m=,∴k=5m=.故选B.【点睛】本题考查反比例函数系数k的几何意义,等腰直角三角形的性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.二、填空题(每小题3分,共24分)11、(−1.5,2)或(−3.5,−2)或(−0.5,4).【解析】

要使以为顶点的四边形是平行四边形,则PQ=AC=2,在直线AB上到x轴的距离等于2的点,就是P点,因此令y=2或−2求得x的值即可.【详解】∵点Q在x轴上,点P在直线AB上,以为顶点的四边形是平行四边形,当AC为平行四边形的边时,∴PQ=AC=2,∵P点在直线y=2x+5上,∴令y=2时,2x+5=2,解得x=−1.5,令y=−2时,2x+5=−2,解得x=−3.5,当AC为平行四边形的对角线时,∵AC的中点坐标为(3,2),∴P的纵坐标为4,代入y=2x+5得,4=2x+5,解得x=−0.5,∴P(−0.5,4),故P为(−1.5,2)或(−3.5,−2)或(−0.5,4).故答案为:(−1.5,2)或(−3.5,−2)或(−0.5,4).【点睛】此题考查坐标与图形变化-旋转,解题关键在于掌握性质的性质12、.【解析】

首先提取公因式,进而利用完全平方公式分解因式即可.【详解】.故答案为:.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.13、1.【解析】

根据题意先确定x的值,再根据方差公式进行计算即可.【详解】解:当x=10时,有两个众数,而平均数只有一个,不合题意舍去.当众数为8时,根据题意得,解得x=6,则这组数据的方差是:.故答案为1.【点睛】本题考查了数据的收集和处理,主要考查了众数、平均数和方差的知识,解题时需要理解题意,分类讨论.14、【解析】连接BE,设CE的长为x∵AC为正方形ABCD的对角线,正方形边长为4,CP=3∴∠BAP=∠PCE=45°,AP=4-3=∴BP2=AB2+AP2-2AB×AP×cos∠BAP=42+()2-2×4××=10PE2=CE2+CP2-2CE×CP×cos∠PCE=(3)2+x2-2x×3×=x2-6x+18BE2=BC2+CE2=16+x2在Rt△PBE中,BP2+PE2=BE2,即:10+x2-6x+18=16+x2,解得:x=2∴PE2=22-6×2+18=10∴PE=.15、1.1,2,2.1.【解析】分析:一组数据中出现次数最多的数据叫做众数,一组数据中众数不止一个,由此可得出a的值,将数据从小到大排列可得出中位数.详解:1,3,1,1,2,a的众数是a,∴a=1或2或3或1,将数据从小到大排列分别为:1,1,1,2,3,1,1,1,2,2,3,1,1,1,2,3,3,1,1,1,2,3,1,1.故中位数分别为:1.1,2,2.1.故答案为:1.1,2,2.1.点睛:本题考查了众数及中位数的知识,解答本题的关键是掌握众数及中位数的定义,属于基础题.16、1【解析】

将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【详解】解:将数据从小到大排列2,1,1,6,7,

因此中位数为1.

故答案为1【点睛】本题考查了中位数,正确理解中位数的意义是解题的关键.17、3.【解析】

先解出一元一次不等式,然后选取正整数解,再求和即可.【详解】解:解得;x<3,;则正整数解有2和1;所以正整数解的和为3;故答案为3.【点睛】本题考查了解一元一次不等式组和正整数的概念,其关键在于选取正整数解.18、【解析】

根据在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点,据此可以作对称点,找到最小值.【详解】解:连接AE.∵四边形ABCD为菱形,∴点C、A关于BD对称,∴PC=AP,∴PC+EP=AP+PE,∴当P在AE与BD的交点时,AP+PE最小,∵E是BC边的中点,∴BE=1,∵AB=2,B=60°,∴AE⊥BC,此时AE最小,为,最小值为.【点睛】本题考查了线段之和的最小值,熟练运用菱形的性质是解题的关键.三、解答题(共66分)19、(1);(2)【解析】

(1)先把P(1,a)代入y=x+2,求出a的值,确定P点坐标为(1,3),然后把P(1,3)代入y=求出k的值,从而可确定反比例函数的解析式;(2)过P作PB⊥x轴于点B,则B点坐标为(1,0),PB=3,然后利用PQ≤1,由垂线段最短可知,PQ≥3,然后利用PQ≤1,在直角三角形PBQ中,PQ=1时,易确定n的取值范围,要注意分点Q在点B左右两种情况.当点Q在点B左侧时,点Q坐标为(-3,0);当点Q在点B右侧时,点Q坐标为(1,0),从而确定n的取值范围.【详解】解:(1)∵直线与反比例函数的图象交于点,∴.∴点P的坐标为.∴.∴反比例函数的解析式为.(2)过P作PB⊥x轴于点B,∵点P的坐标为(1,3),Q(n,0)是x轴上的一个动点,PQ≤1,由勾股定理得BQ≤,∴1-4=-3,1+4=1,∴n的取值范围为-3≤n≤1.【点睛】本题考查了反比例函数与一次函数的交点问题:反比例函数图象与一次函数图象的交点坐标满足两函数的解析式.也考查了勾股定理的应用.20、(1)y=x+1;(2);(2)(2,4)或(﹣2,2)或【解析】

(1)利用待定系数法即可解决问题;

(2)求出点C坐标,利用待定系数法求出直线DE的解析式即可解决问题;

(2)求出点E坐标,分两种情形分别讨论求解即可;【详解】(1)∵A(﹣2,0),OA=2OB,∴OA=2,OB=1,∴B(0,1),设直线AB的解析式为y=kx+b,则有解得∴直线AB的解析式为y=x+1.(2)∵BC=AB,A(﹣2,0),B(0,1),∴C(2,2),设直线DE的解析式为y=k′x+b′,则有解得∴直线DE的解析式为令y=0,得到∴(2)如图1中,作CF⊥OD于F.∵CE:CD=1:2,CF∥OE,∴∵CF=2,∴OE=2.∴m=2.∴E(0,2),D(6,0),①当EC为菱形ECFG的边时,F(4,2),G(2,4)或F′(0,1),G′(﹣2,2).②当EC为菱形EF″CG″的对角线时,F″G″垂直平分线段EC,易知直线DE的解析式为,直线G″F″的解析式为由,解得∴F″,设G″(a,b),则有∴∴G″【点睛】本题考查一次函数综合题、平行线分线段成比例定理、菱形的判定和性质、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.21、36平方米【解析】

连接AC,根据勾股定理,求得AC,再根据勾股定理的逆定理,判断三角形ACD是直角三角形.这块草坪的面积等于两个直角三角形的面积之和.【详解】连接AC,如图,∵AB⊥BC,∴∠ABC=90°.∵AB=3米,BC=4米,∴AC=5米.∵CD=12米,DA=13米,∴CD2+AC2=144+25=169=132=DA2,∴∠ACD=90°,∴△ACD为直角三角形,∴草坪的面积等于=S△ABC+S△ACD=3×4÷2+5×12÷2=6+30=36(米2).【点睛】本题考查了勾股定理和勾股定理的逆定理.22、(1)(2),,,【解析】

(1)根据题意求得点、、、的坐标,进而求得直线和直线解析式.过点作轴垂线交于点,设点横坐标为,即能用表示、的坐标进而表示的长.由得到关于的二次函数,即求得为何值时面积最大,求得此时点坐标.把点向上平移的长,易证四边形是平行四边形,故有.在直线的上方以为斜边作等腰,则有.所以,其中的长为定值,易得当点、、在同一直线上时,线段和的值最小.又点是动点,,由垂线段最短可知过点作的垂线段时,最短.求直线、解析式,联立方程组即求得点坐标,进而求得的长.(2)先求得,,的坐标,可得是等腰直角三角形,当绕逆时针旋转再沿直线平移可得△,根据以,,,为顶点的四边形为菱形,可得,,,,即可求得的坐标,当绕顺时针旋转再沿直线平移可得△,根据以,,,为顶点的四边形为菱形,可得,,即可求得的坐标.【详解】解:(1)如图1,过点作轴于点,交于点,在上截取,连接,以为斜边在直线上方作等腰,过点作于点时,时,解得:,,直线解析式为抛物线上的点的横坐标为3,直线点在轴上,点在直线上,轴设抛物线上的点,当时,最大,,,四边形是平行四边形等腰中,为斜边,当点、、在同一直线上时,最小设直线解析式为解得:直线设直线解析式为解得:直线解得:,最小值为(2),,直线解析式为:,,,,,是等腰直角三角形,如图2,把绕顶点逆时针旋转,得到△,,,把△沿直线平移至△,连接,则直线解析式为,直线解析式为,显然以,,,为顶点的四边形为菱形,不可能为边,只能以、为邻边构成菱形,,,,如图3,把绕顶点顺时针旋转,得到△,,,把△沿直线平移至△,连接,,显然,,,,以,,,为顶点的四边形为菱形,只能为对角线,,.综上所述,点的坐标为:,,,.【点睛】本题考查了二次函数的图象和性质,二次函数最值应用,线段和最小值问题,待定系数法求函数解析式,平移、旋转等几何变换,等腰直角三角形性质,菱形性质等知识点,能熟练运用相关的性质定理是解题的关键.23、(1)﹣2<x≤1(2)见解析【解析】

(1)通过计算得出不等式组中1-3(x-1)<8-x的解集为x>﹣2,—+3≥x+1的解集为x≤1,得出不等式组的解集为﹣2<x≤1.(2)先化简得出结果,要想式分式有意义,则分式的分母不能为0,即x≠0、1、3.则x只能取0,1,2,3中的2,将2带入结果中即可得出最终结果.【详解】(1)由1-3(x-1)<8-x得:1-3x+3<8-x,1+3-8<-x+3x,﹣4<2x,则x>﹣2.由+3≥x+1得:x-3+6≥2x+2﹣3+6-2≥2x-x则x≤1所以不等式组的解集为﹣2<x≤1.(2)÷-=×-=×-=+=+=2要想使分式有意义,必须使分式的分母不能为0,除法中除数不能为0,即+3≠0、()≠0、a-3≠0、a-1≠0,故a≠0、-3、1、3.所以a只能取0、1、2、3中的2,将2代入化简结果2a得:2a=2×2,=4.【点睛】本题主要考查解不等式组以及分式的化简求值.易错点在于第(2)问的化简求值,往往忽略了分式有意义的条件.24、(1);(2).【解析】

(1)先用平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论