2024届广东省潮州潮安区五校联考数学八年级下册期末联考模拟试题含解析_第1页
2024届广东省潮州潮安区五校联考数学八年级下册期末联考模拟试题含解析_第2页
2024届广东省潮州潮安区五校联考数学八年级下册期末联考模拟试题含解析_第3页
2024届广东省潮州潮安区五校联考数学八年级下册期末联考模拟试题含解析_第4页
2024届广东省潮州潮安区五校联考数学八年级下册期末联考模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东省潮州潮安区五校联考数学八年级下册期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.函数y=mx+n与y=nx的大致图象是()A. B.C. D.2.已知不等式组的解集是x≥2,则a的取值范围是()A.a<2 B.a=2 C.a>2 D.a≤23.下列命题中,假命题的是()A.矩形的对角线相等B.平行四边形的对角线互相平分C.对角线互相垂直平分的四边形是菱形D.对角线相等且互相垂直的四边形是正方形4.如图是某公司今年1~5月份的收入统计表(有污染,若2月份,3月份的增长率相同,设它们的增长率为x,根据表中信息,可列方程为()月份12345收入/万元1▄45▄A.(1+x)2=4﹣1 B.(1+x)2=4C.(1+2x)2=7 D.(1+x)(1+2x)=45.多项式因式分解时,应提取的公因式为()A. B. C. D.6.如图所示,两个含有30°角的完全相同的三角板ABC和DEF沿直线l滑动,下列说法错误的是()A.四边形ACDF是平行四边形B.当点E为BC中点时,四边形ACDF是矩形C.当点B与点E重合时,四边形ACDF是菱形D.四边形ACDF不可能是正方形7.在下列条件中,能判定四边形为平行四边形的是()A.两组对边分别平行 B.一组对边平行且另一组对边相等C.两组邻边相等 D.对角线互相垂直8.如图,四边形ABCD是平行四边形,O是对角线AC与BD的交点,AB⊥AC,若AB=8,AC=12,则BD的长是()A.16 B.18 C.20 D.229.一组数据:2,3,3,4,若添加一个数据3,则发生变化的统计量是()A.平均数 B.中位数 C.众数 D.方差10.如图,正比例函数y=x与反比例y=的图象相交于A、C两点,AB⊥x轴于B,CD⊥x轴于D,则四边形ABCD的面积为()A.1 B. C.2 D.二、填空题(每小题3分,共24分)11.有一个质地均匀的正方体,其六个面上分别写着直角梯形、等腰梯形、矩形、正方形、菱形、平行四边形,投掷这个正方体后,向上的一面的图形是对角线相等的图形的概率是_______;12.在四边形中,给出下列条件:①②③④其中能判定四边形是平行四边形的组合是________或________或_________或_________.13.如图,已知等边三角形ABC的边长为7,点D为AB上一点,点E在BC的延长线上,且CE=AD,连接DE交AC于点F,作DH⊥AC于点H,则线段HF的长为____________.14.若一个多边形的各边都相等,它的周长是63,且它的内角和为900°,则它的边长是________.15.已知关于的方程,如果设,那么原方程化为关于的方程是____.16.已知菱形ABCD的面积是12cm2,对角线AC=4cm,则菱形的边长是______cm.17.如图,一根垂直于地面的木杆在离地面高3m处折断,若木杆折断前的高度为8m,则木杆顶端落在地面的位置离木杆底端的距离为________m.18.如图,在△ABC中,AB=AC,∠BAC=120°,S△ABC=8,点M,P,N分别是边AB,BC,AC上任意一点,则:(1)AB的长为____________.(2)PM+PN的最小值为____________.三、解答题(共66分)19.(10分)如图,在矩形ABCD中,AB=8,AD=6,将矩形ABCD绕点A逆时针旋转得到矩形AEFG.(1)如图1,若在旋转过程中,点E落在对角线AC上,AF,EF分别交DC于点M,N.①求证:MA=MC;②求MN的长;(2)如图2,在旋转过程中,若直线AE经过线段BG的中点P,连接BE,GE,求△BEG的面积20.(6分)9月28日,我国神舟七号载人飞船顺利返回地面,下面是“神舟”七号飞船返回舱返回过程中的相关记录:从返回舱制动点火至减速伞打开期间,返回舱距离地面的高度与时间呈二次函数关系,减速伞打开后,返回舱距离地面的高度与时间呈一次函数关系,高度和时间的对应关系如下表:时间4:455:125:155:185:245:265:28返回舱距离地面的高度350km134km80km20km8km4km0km降落状态返回舱制动点火返回舱高速进入黑障区引导伞引出减速伞减速伞打开返回舱抛掉放热大底着陆系统正式启动返回舱成功降落地面设减速伞打开后x分钟,返回舱距离地面的高度为hkm,求h与x的函数关系式。在返回舱在距离地面5km时,要求宇航员打开电磁信号灯以便地面人员搜寻,判断宇航员应在何时开启信号灯?21.(6分)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民户一表生活用水阶梯式计费价格表的部分信息:自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨吨及以下超过17吨但不超过30吨的部分超过30吨的部分说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费.(1)设小王家一个月的用水量为吨,所应交的水费为元,请写出与的函数关系式;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把7月份的水费控制在不超过家庭月收入的.若小王家的月收入为元,则小王家7月份最多能用多少吨水?22.(8分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点N沿路线O→A→C运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)当△ONC的面积是△OAC面积的时,求出这时点N的坐标.23.(8分)如图,已知,直线y=2x+3与直线y=-2x-1,求ΔABC的面积.24.(8分)如图,直线与轴交于点,与轴交于点;直线与轴交于点,与直线交于点,且点的纵坐标为4.(1)不等式的解集是;(2)求直线的解析式及的面积;(3)点在坐标平面内,若以、、、为顶点的四边形是平行四边形,求符合条件的所有点的坐标.25.(10分)如图,在平面直角坐标系中,直线与、轴分别交于、两点.点为线段的中点.过点作直线轴于点.(1)直接写出的坐标;(2)如图1,点是直线上的动点,连接、,线段在直线上运动,记为,点是轴上的动点,连接点、,当取最大时,求的最小值;(3)如图2,在轴正半轴取点,使得,以为直角边在轴右侧作直角,,且,作的角平分线,将沿射线方向平移,点、,平移后的对应点分别记作、、,当的点恰好落在射线上时,连接,,将绕点沿顺时针方向旋转后得,在直线上是否存在点,使得为等腰三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.26.(10分)近年来,随着我国科学技术的迅猛发展,很多行业已经由“中国制造”升级为“中国创造”,高铁事业是“中国创造”的典范,甲、乙两个城市的火车站相距1280千米,加开高铁后,从甲站到乙站的运行时间缩短了11个小时,大大方便了人们出行,已知高铁行驶速度是原来火车速度的3.2倍,求高铁的行驶速度.

参考答案一、选择题(每小题3分,共30分)1、D【解析】

当m>0,n>0时,y=mx+n经过一、二、三象限,y=nx经过一、三象限;当m>0,n<0时,y=mx+n经过一、三、四象限,y=nx经过二、四象限;当m<0,n>0时,y=mx+n经过一、二、四象限,y=nx经过一、三象限;当m<0,n<0时,y=mx+n经过二、三、四象限,y=nx经过二、四象限.综上,A,B,C错误,D正确故选D.考点:一次函数的图象2、B【解析】

解不等式①可得出x≥,结合不等式组的解集为x≥1即可得出a=1,由此即可得出结论.【详解】,∵解不等式①得:x≥,又∵不等式组的解集是x≥1,∴a=1.故选B.【点睛】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的方法及步骤是解题的关键.3、D【解析】

根据平行四边形,矩形,菱形和正方形的对角线进行判断即可.【详解】A、矩形的对角线相等,是真命题;B、平行四边形的对角线互相平分,是真命题;C、对角线互相垂直平分的四边形是菱形,是真命题;D、对角线平分、相等且互相垂直的四边形是正方形,是假命题;故选:D.【点睛】本题考查了从对角线来判断特殊四边形的方法:对角线互相平分的四边形为平行四边形;对角线互相垂直平分的四边形为菱形;对角线互相平分且相等的四边形为矩形;对角线互相垂直平分且相等的四边形为正方形.也考查了真命题与假命题的概念.4、B【解析】

设2月份,3月份的增长率为x,根据等量关系:1月份的收入×(1+增长率)2=1,把相关数值代入计算即可.【详解】解:设2月份,3月份的增长率为x,依题意有1×(1+x)2=1,即(1+x)2=1.故选:B.【点睛】主要考查一元二次方程的应用;求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.5、A【解析】

分别找出系数的最大公约数,相同字母的最低指数次幂,然后即可找出公因式.【详解】=()因此多项式的公因式为故选A【点睛】本题主要考查公因式的确定。找公因式的要点是:

(1)公因式的系数是多项式各项系数的最大公约数;

(2)字母取各项都含有的相同字母;

(3)相同字母的指数取次数最低的.6、B【解析】根据平行四边形、矩形、菱形、正方形的判定方法一一判断即可.解:∵∠ACB=∠EFD=30°,∴AC∥DF,∵AC=DF,∴四边形AFDC是平行四边形,选项A正确;当E是BC中点时,无法证明∠ACD=90°,选项B错误;B、E重合时,易证FA=FD,∵四边形AFDC是平行四边形,∴四边形AFDC是菱形,选项C正确;当四边相等时,∠AFD=60°,∠FAC=120°,∴四边形AFDC不可能是正方形,选项D正确.故选B.点睛:本题考查平行四边形、矩形、菱形、正方形的判定.熟练应用平行四边形、矩形、菱形、正方形的判定方法进行证明是解题的关键.7、A【解析】

根据平行四边形的判定定理逐个判断即可.【详解】A、两组对边分别平行的四边形是平行四边形,故本选项符合题意;B、一组对边平行且另一组对边相等的四边形不一定是平行四边形,故本选项不符合题意;C、两组邻边相等的四边形不一定是平行四边形,故本选项不符合题意;D、对角线互相平分的四边形才是平行四边形,故本选项不符合题意;故选A.【点睛】本题考查了平行四边形的判定定理,能熟记平行四边形的判定定理的内容是解此题的关键,注意:平行四边形的判定定理有:①两组对边分别平行的四边形是平行四边形,②两组对边分别相等的四边形是平行四边形,③两组对角分别平行的四边形是平行四边形,④一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形.8、C【解析】试题分析:根据平行四边形的性质可得AO=6,则根据Rt△AOB的勾股定理得出BO=10,则BD=2BO=20.考点:平行四边形的性质9、D【解析】

依据的定义和公式分别计算新旧两组数据的平均数、中位数、众数、方差求解即可.【详解】原数据的2、3、3、4的平均数为2+3+3+44=3,中位数为3+32=3,众数为3,方差为14×[(2–3)2+(3–3)2×2+(4–3)新数据2、3、3、3、4的平均数为2+3+3+3+45=3,中位数为3,众数为3,方差为15×[(2–3)2+(3–3)2×3+(4–3)2∴添加一个数据3,方差发生变化.故选:D.【点睛】考查平均数、中位数、众数、方差,掌握平均数、中位数、众数、方差的计算方法是解题的关键.10、C【解析】

首先根据反比例函数图像上的点与原点所连的线段、坐标轴、向坐标轴做垂线所围成的直角三角形面积S的关系即S=,得出,再根据反比例函数的对称性可知:OB=OD,得出得出结果.【详解】解:根据反比例函数得对称性可知:OB=OD,AB=CD,∵四边形ABCD的面积等于,又∴S四边形ABCD=2.故答案选:C.【点睛】本题考查的是一次函数与反比例函数的交点问题,解题关键是熟知反比例函数中的几何意义,即图像上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积的关系即.二、填空题(每小题3分,共24分)11、【解析】【分析】先求出总的情况和对角线相等的情况,再根据概率公式可求得.【详解】因为,出现的图形共有6种情况,对角线相等的有(等腰梯形,正方形,矩形)3这情况,所以,P(对角线相等)=故答案为:【点睛】本题考核知识点:概率.解题关键点:掌握概率的求法.12、①③①④②④③④【解析】

根据平行四边形的判定定理确定即可.【详解】解:如图,①③:,,四边形是平行四边形(两组对边分别平行的四边形是平行四边形);①④:,,四边形是平行四边形(两组对边分别平行的四边形是平行四边形);②④:,,四边形是平行四边形(一组对边平行且相等的四边形是平行四边形);③④:,四边形是平行四边形(两组对边分别平行的四边形是平行四边形);所以能判定四边形是平行四边形的组合是①③或①④或②④或③④.故答案为:①③或①④或②④或③④.【点睛】本题考查了平行四边形的判定定理,一组对边平行且相等的四边形是平行四边形;两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形,灵活选用条件及合适的判定定理是解题的关键.13、【解析】

证明:(1)过点D作DG∥BC交AC于点G,∴∠ADG=∠B,∠AGD=∠ACB,∠FDG=∠E,∵△ABC是等边三角形,∴AB=AC,∠B=∠ACB=∠A=60°,∴∠A=∠ADG=∠AGD=60°,∴△ADG是等边三角形,∴AD=DG∵AD=CE,∴DG=CE,在△DFG与△EFC中∴△DFG≌△EFC(AAS),∴GF=FC=GC又∵

DH⊥AC,∴AH=HG=AG,∴HF=HG+GF=AG+GC=AC=故答案为:【点睛】此题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数解决问题,属于中考压轴题14、9【解析】

设多边形的边数为n,先根据多边形的内角和求出多边形的边数,再根据周长即可求出边长.【详解】设多边形的边数为n,由题意得(n-2)·180°=900°解得n=7,则它的边长是63÷7=9.【点睛】本题考查的是多边形的内角和,解答的关键是熟练掌握多边形的内角和公式:(n-2)·180°.15、.【解析】

先根据得到,再代入原方程进行换元即可.【详解】由,可得∴原方程化为3y+故答案为:3y+.【点睛】本题主要考查了换元法解分式方程,换元的实质是转化,将复杂问题简单化.常用的是整体换元法,是在已知或者未知中,某个代数式几次出现,用一个字母来代替它可以简化问题,有时候要通过变形才能换元.16、【解析】分析:根据菱形的面积公式求出另一对角线的长.然后因为菱形的对角线互相垂直平分,利用勾股定理求出菱形的边长.详解:由菱形的面积公式,可得另一对角线长12×2÷4=6,∵菱形的对角线互相垂直平分,根据勾股定理可得菱形的边长=cm.故答案为.点睛:此题主要考查菱形的性质和菱形的面积公式,关键是掌握菱形的两条对角线互相垂直.17、4【解析】

由题意得,在直角三角形中,知道了两直角边,运用勾股定理即可求出斜边,从而得出木杆顶端落在地面的位置离木杆底端的距离.【详解】一颗垂直于地面的木杆在离地面处折断,木杆折断前的高度为,木杆顶端落在地面的位置离木杆底端的距离为.故答案为:.【点睛】此题考查了勾股定理的应用,主要考查学生对勾股定理在实际生活中的运用能力.18、4;2.【解析】

过点A作,垂足为G,依据等腰三角形的性质可得到,设,则,,然后依据三角形的面积公式列方程求解即可;作点A关于BC的对称点,取,则,过点作,垂足为D,当、P、M在一条直线上且时,有最小值,其最小值.【详解】(1)如图所示:过点A作AG⊥BC,垂足为G,∵AB=AC,∠BAC=120°,∴∠ABC=30°,设AB=x,则AG,BGx,则BCx,∴BC•AG•x•x=8,解得:x=4,∴AB的长为4,故答案为:4;(2)如图所示:作点A关于BC的对称点A',取CN=CN',则PN=PN',过点A'作A'D⊥AB,垂足为D,当N'、P、M在一条直线上且MN'⊥AB时,PN+PM有最小值,最小值=MN'=DA'AB=2,故答案为:2.【点睛】本题考查了翻折的性质、轴对称最短路径、垂线段的性质,将的长度转化为的长度是解题的关键.三、解答题(共66分)19、(1)①见解析;②;(2)△BEG的面积为48﹣6或48+6【解析】

(1)①由矩形的性质得出,得出,由旋转的性质得:,证出,即可得出;②设,则,在中,由勾股定理得出方程,解得:,在中,由勾股定理得出,得出,证出,得出即可;(2)分情况讨论:①过点作于,证明,得出,,在中,由勾股定理得出,得出,得出,得出的面积的面积;②同①得:,,得出,得出的面积的面积即可.【详解】(1)①证明:四边形是矩形,,,由旋转的性质得:,,;②解:设,则,在中,,解得:,在中,,,,,又,,;(2)解:分情况讨论:①如图2所示:过点作于,则,在和中,,,,,在中,,,,的面积的面积;②如图3所示:同①得:,,,的面积的面积;综上所述,的面积为或.【点睛】本题是四边形综合题目,考查了矩形的性质、旋转变换的性质、全等三角形的判定与性质、等腰三角形的判定、勾股定理、三角形面积、分类讨论等知识;本题综合性强,有一定难度,证明三角形全等是解题的关键.20、(1)h=-2x+20(2)5时25分30秒(或减速伞打开后7.5秒)【解析】(1)由图表值减速伞打开后的距离地面的高度是20,每分钟降2km,列函数关系式为h=-2x+20(2)因为每分钟降2km,距离地面5km时,宇航员应在5时25分30秒开启信号灯21、(1)y=;(2)40吨.【解析】

(1)由水费=自来水费+污水处理,分段得出y与x的函数关系式;(2)先判断用水量超过30吨,继而再由水费不超过184,可得出不等式,解出即可.【详解】解:(1)设小王家一个月的用水量为x吨,所应交的水费为y元,则①当用水量17吨及以下时,y=(2.2+0.8)x=3x;②当17<x≤30时,y=17×2.2+4.2(x−17)+0.8x=5x−34;③当x>30时,y=17×2.2+13×4.2+6(x−30)+0.8x=6.8x−1.∴y=;(2)当用水量为30吨时,水费为:6.8×30−1=116元,9200×2%=184元,∵116<184,∴小王家七月份的用水量超过30吨,设小王家7月份用水量为x吨,由题意得:6.8x−1≤184,解得:x≤40,∴小王家七月份最多用水40吨.【点睛】本题考查了一次函数的应用及一元一次不等式的应用,解答本题的关键是仔细审题,将实际问题转化为数学模型求解.22、(1)y=-x+6;(2)12;(3)或.【解析】

(1)利用待定系数法,即可求得函数的解析式;(2)由一次函数的解析式,求出点C的坐标,即OC的长,利用三角形的面积公式,即可求解;(3)当△ONC的面积是△OAC面积的时,根据三角形的面积公式,即可求得N的横坐标,然后分别代入直线OA的解析式,即可求得N的坐标.【详解】(1)设直线AB的函数解析式是y=kx+b,根据题意得:,解得:,∴直线AB的解析式是:y=-x+6;(2)在y=-x+6中,令x=0,解得:y=6,∴;(3)设直线OA的解析式y=mx,把A(4,2)代入y=mx,得:4m=2,解得:,即直线OA的解析式是:,∵△ONC的面积是△OAC面积的,∴点N的横坐标是,当点N在OA上时,x=1,y=,即N的坐标为(1,),当点N在AC上时,x=1,y=5,即N的坐标为(1,5),综上所述,或.【点睛】本题主要考查用待定系数法求函数解析式,根据平面直角坐标系中几何图形的特征,求三角形的面积和点的坐标,数形结合思想和分类讨论思想的应用,是解题的关键.23、2【解析】

将直线y=2x+3与直线y=−2x−1组成方程组,求出方程组的解即为C点坐标,再求出A、B的坐标,得到AB的长,即可求出△ABC的面积.【详解】解:将直线y=2x+3与直线y=-2x-1联立成方程组得:解得,即C点坐标为(-1,1).∵直线y=2x+3与y轴的交点坐标为(0,3),直线y=-2x-1与y轴的交点坐标为(0,-1),∴AB=4,∴.【点睛】本题考查了两条直线相交的问题,熟知函数图象上点的坐标特征是解题的关键.24、(1);(2)的面积为2;(3)符合条件的点共有3个:,,【解析】

(1)直线l1交于点D,且点D的纵坐标为4,则4=2x+2,解得:x=1,故点D(1,4),即可求解;(2)将点B、D的坐标代入y=kx+b,即可求解;(3)分AB是平行四边形的一条边、AB是平行四边形的对角线两种情况,分别求解.【详解】(1)把代入得:当时,不等式的解集是(2)把、代入得:直线的解析式是:令由知:的面积为2(3),,以、、、为顶点的四边形是平行四边形由平移可知:,,符合条件的点共有3个:,,【点睛】本题为一次函数综合运用题,涉及到平行四边形的基本性质、求解不等式等知识点,其中(3),要注意分类求解,避免遗漏.25、(1),(2),(3)存在,或【解析】

(1)求出B,C两点坐标,利用中点坐标公式计算即可.(2)如图1中,作点B关于直线m的对称点,连接CB′,延长CB′交直线m于点P,此时PC-PB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论