郑州枫杨外国语中学2024届八年级数学第二学期期末教学质量检测模拟试题含解析_第1页
郑州枫杨外国语中学2024届八年级数学第二学期期末教学质量检测模拟试题含解析_第2页
郑州枫杨外国语中学2024届八年级数学第二学期期末教学质量检测模拟试题含解析_第3页
郑州枫杨外国语中学2024届八年级数学第二学期期末教学质量检测模拟试题含解析_第4页
郑州枫杨外国语中学2024届八年级数学第二学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

郑州枫杨外国语中学2024届八年级数学第二学期期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.若关于x的方程是一元二次方程,则m的取值范围是()A.. B.. C. D..2.如图,△AOB是等边三角形,B(2,0),将△AOB绕O点逆时针方向旋转90°到△A′OB′位置,则A′坐标是()A.(﹣1,) B.(﹣,1) C.(,﹣1) D.(1,﹣)3.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.4.如图,已知函数y=ax+b和y=kx的图像交于点P,则根据图像可得关于x,y的二元一次方程组的解是()A. B. C. D.5.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“和谐”方程;如果一元二次方程ax2+bx+c=0(a≠0)满足a﹣b+c=0那么我们称这个方程为“美好”方程,如果一个一元二次方程既是“和谐”方程又是“美好”方程,则下列结论正确的是()A.方有两个相等的实数根 B.方程有一根等于0C.方程两根之和等于0 D.方程两根之积等于06.如图,矩形中,,,点是的中点,平分交于点,过点作于点,连接,则的长为()A.3 B.4 C.5 D.67.下列图形都是由同样大小的矩形按一定的规律组成,其中,第①个图形中一共有6个矩形,第②个图形中一共有11个矩形,…,按此规律,第⑥个图形中矩形的个数为()A.31 B.30 C.28 D.258.下列交通标志图案中,是中心对称图形的是()A. B. C. D.9.正比例函数的图象经过点,,当时,,则的取值范围是()A. B. C. D.10.如图,已知正方形ABCD的边长为10,E在BC边上运动,取DE的中点G,EG绕点E顺时针旋转90°得EF,问CE长为多少时,A、C、F三点在一条直线上()A. B. C. D.11.若,则的值为()A.14 B.16 C.18 D.2012.已知四边形是平行四边形,下列结论中不正确的是()A.当时,它是菱形 B.当时,它是菱形C.当时,它是矩形 D.当时,它是正方形二、填空题(每题4分,共24分)13.若点位于第二象限,则x的取值范围是______.14.将一张A3纸对折并沿折痕裁开,得到2张A4纸.已知A3纸和A4纸是两个相似的矩形,则矩形的短边与长边的比为______.15.既是矩形又是菱形四边形是________.16.某车间5名工人日加工零件数依次为6、9、5、5、4,则这组数据的中位数是____.17.如图,已知EF是△ABC的中位线,DE⊥BC交AB于点D,CD与EF交于点G,若CD⊥AC,EF=8,EG=3,则AC的长为___________.18.一次函数y=-x-1的图象不经过第_____象限.三、解答题(共78分)19.(8分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.20.(8分)如图,已知点E,F分别是平行四边形ABCD的边BC,AD上的中点,且∠BAC=90°.(1)求证:四边形AECF是菱形;(2)若AC=4,AB=5,求菱形AECF的面积.21.(8分)先化简,再求值:,其中.22.(10分)如图,是矩形的边延长线上的一点,连接,交于,把沿向左平移,使点与点重合,吗?请说明理由.23.(10分)在▱ABCD中,点E,F分别在边BC,AD上,且AF=CE.(Ⅰ)如图①,求证四边形AECF是平行四边形;(Ⅱ)如图②,若∠BAC=90°,且四边形AECF是边长为6的菱形,求BE的长.24.(10分)某花卉种植基地准备围建一个面积为100平方米的矩形苗圃园园种植玫瑰花,其中一边靠墙,另外三边用29米长的篱笆围成.已知墙长为18米,为方便进入,在墙的对面留出1米宽的门(如图所示),求这个苗圃园垂直于墙的一边长为多少米?25.(12分)如图,在▱ABCD中,对角线AC,BD相交于点O,过点O的一条直线分别交AD,BC于点E,F.求证:AE=CF.26.如图,在矩形ABCD中,AC=60cm,∠BAC=60°,点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,同时点F从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点E,F运动的时间是t秒(0<t≤15).过点F作OF⊥BC于点O,连接OE,EF.(1)求证:AE=OF;(2)四边形AEOF能够成为菱形吗?如果能,求出相应的t值,如果不能,请说明理由;(3)当t为何值时,△OEF为直角三角形?请说明理由.

参考答案一、选择题(每题4分,共48分)1、A【解析】

根据一元二次方程的定义可得m﹣1≠0,再解即可.【详解】由题意得:m﹣1≠0,解得:m≠1,故选A.【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.2、B【解析】

过点A′作A′C⊥x轴于C,根据点B的坐标求出等边三角形的边长,再求出∠A′OC=30,然后求出OC、A′C,再根据点A′在第二象限写出点A′的坐标即可.【详解】如图,过点A′作A′C⊥x轴于C,∵B(2,0),∴等边△AOB的边长为2,又∵∠A′OC=90−60=30,∴OC=2×cos30=2×=,A′C=2×=1,∵点A′在第二象限,∴点A′(﹣,1).故选:B.【点睛】本题考查了坐标与图形变化−旋转,等边三角形的性质,根据旋转的性质求出∠A′OC=30,然后解直角三角形求出点A′的横坐标与纵坐标的长度是解题的关键.3、C【解析】

在平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合的图形叫做中心对称图形,根据这两点即可判断.【详解】解:A、是轴对称图形,不是中心对称图形.故A错误;B、是轴对称图形,不是中心对称图形.故B错误;C、是轴对称图形,也是中心对称图形.故C正确;D、不是轴对称图形,是中心对称图形.故D错误.故选:C.【点睛】本题主要考查的是轴对称图形和中心对称图形的定义,掌握这两个知识点是解题的关键.4、B【解析】函数y=ax+b和y=kx的图象交于点P(−4,−2),即x=−4,y=−2同时满足两个一次函数的解析式。所以关于x,y的方程组的解是:x=-4,y=-2.故选B.点睛:由图可知:两个一次函数的交点坐标为(-4,-2);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.5、C【解析】试题分析:根据已知得出方程ax2+bx+c=0(a≠0)有两个根x=1和x=﹣1,再判断即可.解:∵把x=1代入方程ax2+bx+c=0得出:a+b+c=0,把x=﹣1代入方程ax2+bx+c=0得出a﹣b+c=0,∴方程ax2+bx+c=0(a≠0)有两个根x=1和x=﹣1,∴1+(﹣1)=0,即只有选项C正确;选项A、B、D都错误;故选C.6、C【解析】

连接CG,由矩形的性质好已知条件可证明EF是△DGC的中位线,在直角三角形GBC中利用勾股定理可求出CG的长,进而可求出EF的长.【详解】连接CG,∵四边形ABCD是矩形,∴AB∥CD,∠B=90∘,AD=BC=8,∴∠AGD=∠GDC,∵DG平分∠ADC,∴∠ADG=∠GDC,∴∠AGD=∠ADG,∴AG=AD=8,∵AF⊥DG于点F,∴FG=FD,∵点E是CD的中点,∴EF是△DGC的中位线,∴EF=CG,∵AB=14,∴GB=6,∴CG==10,∴EF=×10=5,故选C.【点睛】此题主要考查矩形的线段求解,解题的关键是熟知平行线的性质、三角形中位线定理及勾股定理的运用.7、A【解析】

由于图①有矩形有6个=5×1+1,图②矩形有11个=5×2+1,图③矩形有16=5×3+1,第n个图形矩形的个数是5n+1把n=6代入求出即可.【详解】解:∵图①有矩形有6个=5×1+1,图②矩形有11个=5×2+1,图③矩形有16=5×3+1,∴第n个图形矩形的个数是5n+1当n=6时,5×6+1=31个.故选:A.【点睛】此题主要考查了图形的变化规律,是根据图形进行数字猜想的问题,关键是通过归纳与总结,得到其中的规律,然后利用规律解决一般问题.8、C【解析】

根据中心对称图形的概念,分别判断即可.【详解】解:A、B、D不是中心对称图形,C是中心对称图形.故选C.点睛:本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.9、C【解析】

由题目所给信息“当x1<x2时,y1>y2”可以知道,y随x的增大而减小,则由一次函数性质可以知道应有:1-2m<0,进而可得出m的取值范围.【详解】解:由题意可知:在正比例函数y=(1-2m)x中,y随x的增大而减小

由一次函数性质可知应有:1-2m<0,即-2m<-1,

解得:故选:C【点睛】此题主要考查了一次函数的图象性质,只有掌握它的性质才能灵活运用.10、C【解析】

过F作BC的垂线,交BC延长线于N点,连接AF.只要证明Rt△FNE∽Rt△ECD,利用相似比2:1解决问题.再证明△CNF是等腰直角三角形即可解决问题.【详解】过F作BC的垂线,交BC延长线于N点,连接AF.

∵∠DCE=∠ENF=90°,∠DEC+∠NEF=90°,∠NEF+∠EFN=90°,

∴∠DEC=∠EFN,

∴Rt△FNE∽Rt△ECD,

∵DE的中点G,EG绕E顺时针旋转90°得EF,

∴两三角形相似比为1:2,

∴可以得到CE=2NF,NE=CD=5.

∵AC平分正方形直角,

∴∠NFC=45°,

∴△CNF是等腰直角三角形,

∴CN=NF,

∴CE=NE=5=,

故选C.【点睛】本题考查正方形的性质和旋转的性质,解题的关键是掌握正方形的性质和旋转的性质.11、C【解析】

先将移项得:,然后两边平方,再利用完全平方公式展开,整理即可得解.【详解】∵,∴,∴,∴,故选C.【点睛】本题考查了完全平方公式,牢牢掌握平方公式是解决本题的关键.12、D【解析】

根据特殊平行四边形的判定方法判断即可.【详解】解:有一组邻边相等的平行四边形是菱形,A选项正确;对角线互相垂直的平行四边形是菱形,B选项正确;有一个角是直角的平行四边形是矩形,C选项正确;对角线互相垂直且相等的平行四边形是正方形,D选项错误.故答案为:D【点睛】本题考查了特殊平行四边形的判定方法,熟练掌握特殊平行四边形与平行四边形之间的关系是判定的关键.二、填空题(每题4分,共24分)13、【解析】

点在第二象限时,横坐标<0,纵坐标>0,可得关于x的不等式,解不等式即可得答案.【详解】点位于第二象限,,解得:,故答案为.【点睛】本题考查了象限内点的坐标特征,解一元一次不等式,解决本题的关键是记住各个象限内点的坐标的符号,进而转化为解不等式的问题.14、【解析】

先表示出对折后的矩形的长和宽,再根据相似矩形对应边成比例列出比例式,然后求解.【详解】解:设原来矩形的长为x,宽为y,则对折后的矩形的长为y,宽为,∵得到的两个矩形都和原矩形相似,∴x:y=y:,解得x:y=:1.∴矩形的短边与长边的比为1:,故答案为:.【点睛】本题主要利用相似多边形对应边成比例的性质,需要熟练掌握.15、正方形【解析】

根据正方形的判定定理即可得到结论.【详解】既是矩形又是菱形的四边形是正方形,故答案为正方形.【点睛】本题考查了正方形的判定,熟练掌握正方形的判定定理是解题的关键.16、1【解析】

根据中位数的定义即可得.【详解】将这组数据按从小到大进行排序为则其中位数是1故答案为:1.【点睛】本题考查了中位数的定义,熟记定义是解题关键.17、1【解析】

由三角形中位线定理得出AB=2EF=16,EF∥AB,AF=CF,CE=BE,证出GE是△BCD的中位线,得出BD=2EG=6,AD=AB-BD=10,由线段垂直平分线的性质得出CD=BD=6,再由勾股定理即可求出AC的长.【详解】∵EF是△ABC的中位线,∴AB=2EF=16,EF∥AB,AF=CF,CE=BE,∴G是CD的中点,∴GE是△BCD的中位线,∴BD=2EG=6,∴AD=AB-BD=10,∵DE⊥BC,CE=BE,∴CD=BD=6,∵CD⊥AC,∴∠ACD=90°,∴AC=;故答案为:1.【点睛】本题考查了三角形中位线定理、线段垂直平分线的性质、勾股定理等知识;熟练掌握三角形中位线定理,求出CD=BD是解题的关键.18、一.【解析】

先根据一次函数y=-x-1中k=-,b=-1判断出函数图象经过的象限,进而可得出结论.【详解】解:∵一次函数y=-x-1中k=-<0,b=-1<0,∴此函数的图象经过二、三、四象限,不经过第一象限.故答案为:一.【点睛】本题考查一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0,b<0时,函数图象经过二、三、四象限.三、解答题(共78分)19、(1)BD=CD.理由见解析;(2)AB=AC时,四边形AFBD是矩形.理由见解析【解析】

(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等,根据全等三角形对应边相等可得AF=CD,再利用等量代换即可得证;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90°,由等腰三角形三线合一的性质可知必须是AB=AC.【详解】(1)BD=CD.理由如下:依题意得AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD(三线合一),∴∠ADB=90°,∴▱AFBD是矩形.考点:1.矩形的判定;2.全等三角形的判定与性质.20、(1)见解析;(2)10.【解析】

(1)由平行四边形的性质可得BC=AD,BC∥AD,由中点的性质可得EC=AF,可证四边形AECF为平行四边形,由直角三角形的性质可得AE=EC,即可得结论;(2)可求S△ABC=12AB×AC=10,即可求菱形AECF【详解】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵点E,F分别是边BC,AD上的中点∴AF∥EC,AF=EC∴四边形AECF是平行四边形.在Rt△ABC中,∠BAC=90°,点E是BC边的中点,∴AE=12∴平行四边形AECF是菱形.(2)∵∠BAC=90°,AB=5,AC=4,∴S△ABC=12∵点E是BC的中点,∴S△AEC=12S△∵四边形AECF是菱形∴四边形AECF的面积=2S△AEC=10.【点睛】本题考查了菱形的判定和性质,直角三角形的性质,三角形的面积公式,熟练运用菱形的判定是本题的关键.21、;.【解析】

根据分式的运算法则进行计算,即可求出答案.【详解】解:原式当时,原式【点睛】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.22、见解析【解析】

根据平移的性质得到∠GCB=∠DAF,然后利用ASA证得两三角形全等即可.【详解】解:△ADF≌△CBG;理由:∵把△ABE沿CB向左平移,使点E与点C重合,∴∠GCB=∠E,∵四边形ABCD是矩形,∴∠E=∠DAF,∴∠GCB=∠DAF,在△ADF与△CBG中,,∴△ADF≌△CBG(ASA).【点睛】本题考查了矩形的性质及全等三角形的判定等知识,解题的关键是了解矩形的性质与平移的性质,难度不大.23、(1)证明见解析;(2)1.【解析】

(I)根据平行四边形的性质得出AD∥BC,根据平行四边形的判定推出即可;(II)根据菱形的性质求出AE=1,AE=EC,求出AE=BE即可.【详解】(I)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∵AF=CE,∴四边形AECF是平行四边形;(II)如图:∵四边形AECF是菱形,∴AE=EC,∴∠1=∠2,∵∠BAC=90°,∴∠2+∠3=90°∠1+∠B=90°,∴∠3=∠B,∴AE=BE,∵AE=1,∴BE=1.【点睛】本题考查了平行四边形的性质,等腰三角形的性质,菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.24、10米【解析】

设这个苗圃园垂直于墙的一边长为x米,则平行于墙的一边为(29+1-2x)米,根据此矩形苗圃园面积为100平方米列一元二次方程求解可得答案.【详解】解:设这个苗圃园垂直于墙的一边长为x米,则平行于墙的一边为(29+1-2x)米,由题意得:x(30-2x)=100,-2x+30x-100=0,x-15x+50=0(x-5)(x-10)=0,或,当x=5时,则平行于墙的一边为20米>18米,不符合题意,取x=10,答:垂直于墙的一边长为10米.【点睛】本题主要考查一元二次方程的应用,根据已知条件列出方程式解题的关键.25、证明见解析.【解析】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论