山西省临汾市2024届数学八年级下册期末质量跟踪监视模拟试题含解析_第1页
山西省临汾市2024届数学八年级下册期末质量跟踪监视模拟试题含解析_第2页
山西省临汾市2024届数学八年级下册期末质量跟踪监视模拟试题含解析_第3页
山西省临汾市2024届数学八年级下册期末质量跟踪监视模拟试题含解析_第4页
山西省临汾市2024届数学八年级下册期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省临汾市2024届数学八年级下册期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在▱ABCD中,BE⊥AD于点E,BF⊥CD于点F,若BE=2,BF=3,▱ABCD的周长为20,则平行四边形的面积为()A.12 B.18 C.20 D.242.关于的一元二次方程有两个实数根,则的取值范围是()A. B. C.且 D.且3.下列命题的逆命题正确的是()A.如果两个角都是45°,那么它们相等 B.全等三角形的周长相等C.同位角相等,两直线平行 D.若a=b,则4.如图,中,于点,于点,,,.则等于()A. B. C. D.5.方程x(x-6)=0的根是()A.x1=0,x2=-6 B.x1=0,x2=6 C.x=6 D.x=06.下列各点中,在反比例函数y=图象上的是()A.(2,3) B.(﹣1,6) C.(2,﹣3) D.(﹣12,﹣2)7.已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为(,m),则不等式组mx﹣2<kx+1<mx的解集为()A.x> B.<x< C.x< D.0<x<8.正五边形的每个内角度数是(

)A.60°

B.90°

C.108°D.120°9.根据PM2.5空气质量标准:24小时PM2.5均值在0∽35(微克/立方米)的空气质量等级为优.将环保部门对我市PM2.5一周的检测数据制作成如下统计表,这组PM2.5数据的中位数是()天数31111PM2.51820212930A.21微克立方米 B.20微克立方米C.19微克立方米 D.18微克立方米10.下列二次根式中是最简二次根式的是()A. B. C. D.11.一次函数的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.下列命题的逆命题,是假命题的是()A.两直线平行,内错角相等 B.全等三角形的对应边相等C.对顶角相等 D.有一个角为度的三角形是直角三角形二、填空题(每题4分,共24分)13.直角三角形中,两条直角边长分别为12和5,则斜边上的中线长是________.14.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为_____.15.与最简二次根式是同类二次根式,则__________.16.如图,平行四边形ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=10,则DOE的周长为_____.17.如图,四边形ABCD中,E、F、G、H分别为各边的中点,顺次连结E、F、G、H,把四边形EFGH称为中点四边形.连结AC、BD,容易证明:中点四边形EFGH一定是平行四边形.(1)如果改变原四边形ABCD的形状,那么中点四边形的形状也随之改变,通过探索可以发现:当四边形ABCD的对角线满足AC=BD时,四边形EFGH为菱形;当四边形ABCD的对角线满足时,四边形EFGH为矩形;当四边形ABCD的对角线满足时,四边形EFGH为正方形.(2)试证明:S△AEH+S△CFG=S□ABCD(3)利用(2)的结论计算:如果四边形ABCD的面积为2012,那么中点四边形EFGH的面积是(直接将结果填在横线上)18.甲、乙两人进行射击测试,每人20次射击的平均成绩恰好相等,且他们的标准差分别是S甲=1.8,S乙=0.1.在本次射击测试中,甲、乙两人中成绩较为稳定的是_____.(填:甲或乙)三、解答题(共78分)19.(8分)历下区某学校组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有,队伍8:00从学校出发。苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,结果同时到达基地.求大巴车与小车的平均速度各是多少?20.(8分)(1)研究规律:先观察几个具体的式子:(2)寻找规律:(且为正整数)(3)请完成计算:21.(8分)王华同学要证明命题“对角线相等的平行四边形是矩形”是正确的,她先作出了如图所示的平行四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在平行四边形ABCD中,

,求证:平行四边形ABCD是

.(1)在方框中填空,以补全已知和求证;(2)按王晓的想法写出证明过程;证明:22.(10分)如图,在平面直角坐标系中,四边形为平行四边形,为坐标原点,,将平行四边形绕点逆时针旋转得到平行四边形,点在的延长线上,点落在轴正半轴上.(1)证明:是等边三角形:(2)平行四边形绕点逆时针旋转度.的对应线段为,点的对应点为①直线与轴交于点,若为等腰三角形,求点的坐标:②对角线在旋转过程中设点坐标为,当点到轴的距离大于或等于时,求的范围.23.(10分)如图,四边形ABCD中,∠C=90°,AD⊥DB,点E为AB的中点,DE∥BC.(1)求证:BD平分∠ABC;(2)连接EC,若∠A=30°,DC=,求EC的长.24.(10分)数学活动课上,老师提出了一个问题:如图1,A、B两点被池塘隔开,在AB外选一点,连接AC和BC,怎样测出A、B两点的距离?(活动探究)学生以小组展开讨论,总结出以下方法:⑴如图2,选取点C,使AC=BC=a,∠C=60°;⑵如图3,选取点C,使AC=BC=b,∠C=90°;⑶如图4,选取点C,连接AC,BC,然后取AC、BC的中点D、E,量得DE=c…(活动总结)(1)请根据上述三种方法,依次写出A、B两点的距离.(用含字母的代数式表示)并写出方法⑶所根据的定理.AB=________,AB=________,AB=________.定理:________.(2)请你再设计一种测量方法,(图5)画出图形,简要说明过程及结果即可.25.(12分)如图,一次函数的图象与轴交于点,与轴交于点,过的中点的直线交轴于点.(1)求,两点的坐标及直线的函数表达式;(2)若坐标平面内的点,能使以点,,,为顶点的四边形为平行四边形,请直接写出满足条件的点的坐标.26.如图,在平面直角坐标系xOy中,已知直线AB经过点A(﹣2,0),与y轴的正半轴交于点B,且OA=2OB.(1)求直线AB的函数表达式;(2)点C在直线AB上,且BC=AB,点E是y轴上的动点,直线EC交x轴于点D,设点E的坐标为(0,m)(m>2),求点D的坐标(用含m的代数式表示);(3)在(2)的条件下,若CE:CD=1:2,点F是直线AB上的动点,在直线AC上方的平面内是否存在一点G,使以C,G,F,E为顶点的四边形是菱形?若存在,请求出点G的坐标;若不存在,请说明理由.

参考答案一、选择题(每题4分,共48分)1、A【解析】

根据平行四边形的周长求出AD+CD,再利用面积列式求出AD、CD的关系,然后求出AD的长,再利用平行四边形的面积公式列式计算即可得解.【详解】解:∵▱ABCD的周长为20,∴2(AD+CD)=20,∴AD+CD=10①,∵S▱ABCD=AD•BE=CD•BF,∴2AD=3CD②,联立①、②解得AD=6,∴▱ABCD的面积=AD•BE=6×2=1.故选:A.【点睛】本题考查平行四边形的性质,解题的关键是掌握平行四边形的性质.2、C【解析】

利用一元二次方程的定义和判别式的意义得到k+1≠0且△=(-2)2-4(k+1)×(-1)≥0,然后求出两不等式的公共部分即可.【详解】解:根据题意得k+1≠0且△=(-2)2-4(k+1)×(-1)≥0,解得:且.故选:C.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.3、C【解析】

交换原命题的题设与结论得到四个命题的逆命题,然后分别根据三角形的概念、全等三角形的判定、平行线的性质和平方根的定义判定四个逆命题的真假.【详解】A.

逆命题为:如果两个角相等,那么它们都是45°,此逆命题为假命题;

B.

逆命题为:周长相等的两三角形全等,此逆命题为假命题;

C.

逆命题为:两直线平行,同位角相等,此逆命题为真命题;

D.

逆命题为:若a2=b2,则a=b,此逆命题为假命题.

故选C.【点睛】本题考查命题与定理,解题的关键是掌握三角形的概念、全等三角形的判定、平行线的性质和平方根的定义.4、B【解析】

由平行四边形的性质得出CD=AB=9,得出S▱ABCD=BC•AE=CD•AF,即可得出结果.【详解】∵四边形ABCD是平行四边形,∴CD=AB=9,∵AE⊥BC于点E,AF⊥CD于点F,AF=12,AE=8,∴S▱ABCD=BC•AE=CD•AF,即BC×8=9×12,解得:BC=;故选:B.【点睛】此题考查了平行四边形的性质以及平行四边形的面积公式运用,此题难度适中,注意掌握方程思想与数形结合思想的应用.5、B【解析】

根据因式分解,原方程转化为x=0或x-6=0,然后解两个一次方程即可得答案.【详解】解:x(x-6)=0,x=0或x-6=0,∴x1=0,x2=6,故选B.【点睛】本题考查了因式分解法解一元二次方程,熟练掌握解一元二次方程的解法是关键.6、A【解析】

根据反比例函数图象上点的坐标特征进行判断.即当时在反比例函数y=图象上.【详解】解:∵2×3=6,﹣1×6=﹣6,2×(﹣3)=﹣6,﹣12×(﹣2)=24,∴点(2,3)在反比例函数y=图象上.故选:A.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数为常数,的图象是双曲线,图象上的点的横纵坐标的积是定值k,即.7、B【解析】

由mx﹣2<(m﹣2)x+1,即可得到x<;由(m﹣2)x+1<mx,即可得到x>,进而得出不等式组mx﹣2<kx+1<mx的解集为<x<.【详解】把(,m)代入y1=kx+1,可得m=k+1,解得k=m﹣2,∴y1=(m﹣2)x+1,令y3=mx﹣2,则当y3<y1时,mx﹣2<(m﹣2)x+1,解得x<;当kx+1<mx时,(m﹣2)x+1<mx,解得x>,∴不等式组mx﹣2<kx+1<mx的解集为<x<,故选B.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.8、C【解析】

先根据多边形的内角和公式(n-2)•180°求出内角和,然后除以5即可;【详解】根据多边形内角和定理可得:(5-2)•180°=540°,

540°÷5=108°;故选:C.【点睛】考查了正多边形的内角与外角的关系,解题关键熟记、运用求多边形内角和公式(n-2)•180°.9、B【解析】

按大小顺序排列这组数据,最中间那个数是中位数.【详解】解:从小到大排列此数据为:18,18,18,1,21,29,30,位置处于最中间的数是:1,

所以组数据的中位数是1.

故选B.【点睛】此题主要考查了中位数.找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.10、A【解析】

根据最简二次根式的定义判断即可.【详解】A.是最简二次公式,故本选项正确;B.=不是最简二次根式,故本选项错误;C.=不是最简二次根式,故本选项错误;D.=不是最简二次根式,故本选项错误.故选A.【点睛】本题考查了最简二次根式,掌握最简二次根式的定义是解题的关键.11、B【解析】

由二次函数,可得函数图像经过一、三、四象限,所以不经过第二象限【详解】解:∵,∴函数图象一定经过一、三象限;又∵,函数与y轴交于y轴负半轴,

∴函数经过一、三、四象限,不经过第二象限故选B【点睛】此题考查一次函数的性质,要熟记一次函数的k、b对函数图象位置的影响12、C【解析】

根据平行线的判定与性质,可判断A;根据全等三角形的判断与性质,可判断B;根据对顶角性质,可判断C;根据直角三角形的判断与性质,可判断D.【详解】A“两直线平行,内错角相等”的逆命题是“内错角相等,两直线平行”是真命题,故A不符合题意;B“全等三角形的对应边相等”的逆命题是“三边对应相等的两个三角形全等”是真命题,故B不符合题意;C“对顶角相等”的逆命题是“相等的角是对顶角”是假命题,故C符合题意;D“有一个角为90度的三角形是直角三角形”的逆命题是“直角三角形中有一个角是90度”是真命题,故D不符合题意;故选C【点睛】本题考查了命题与定理,熟练掌握相关性质定理是解答本题的关键.二、填空题(每题4分,共24分)13、6.5【解析】

利用勾股定理求得直角三角形的斜边,然后利用直角三角形斜边上的中线等于斜边的一半解题.【详解】解:如图,在△ABC中,∠C=90°,AC=11,BC=5,根据勾股定理知,∵CD为斜边AB上的中线,故答案为:6.5【点睛】本题考查了勾股定理、直角三角形斜边上的中线.勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a1+b1=c1.即直角三角形,两直角边的平方和等于斜边的平方.直角三角形的性质:在直角三角形中斜边上的中线等于斜边的一半.14、【解析】试题解析:设BE与AC交于点P,连接BD,∵点B与D关于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度;∵正方形ABCD的边长为1,∴AB=1.又∵△ABE是等边三角形,∴BE=AB=1.故所求最小值为1.考点:轴对称﹣最短路线问题;等边三角形的性质;正方形的性质.15、1【解析】

先把化为最简二次根式,再根据同类二次根式的定义得到m+1=2,然后解方程即可.【详解】解:∵,∴m+1=2,∴m=1.故答案为1.【点睛】本题考查了同类二次根式:几个二次根式化为最简二次根式后,若被开方数相同,那么这几个二次根式叫同类二次根式.16、1【解析】

由平行四边形的性质得出AB=CD,AD=BC,OB=OD=BD=5,得出BC+CD=18,证出OE是△BCD的中位线,DE=CD,由三角形中位线定理得出OE=BC,△DOE的周长=OD+OE+DE=OD+(BC+CD),即可得出结果.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OB=OD=BD=5,∵平行四边形ABCD的周长为36,∴BC+CD=18,∵点E是CD的中点,∴OE是△BCD的中位线,DE=CD,∴OE=BC,∴△DOE的周长=OD+OE+DE=OD+(BC+CD)=5+9=1;故答案为:1.【点睛】本题考查平行四边形的性质、三角形中位线的性质,熟练运用平行四边形和三角形中位线的性质定理是解题的关键.17、;(2)详见解析;(3)1【解析】

(1)若四边形EFGH为矩形,则应有EF∥HG∥AC,EH∥FG∥BD,EF⊥EH,故应有AC⊥BD;若四边形EFGH为正方形,同上应有AC⊥BD,又应有EH=EF,而EF=AC,EH=BD,故应有AC=BD.

(2)由相似三角形的面积比等于相似比的平方求解.

(3)由(2)可得S▱EFGH=S四边形ABCD=1【详解】(1)解:若四边形EFGH为矩形,则应有EF∥HG∥AC,EH∥FG∥BD,EF⊥EH,故应有AC⊥BD;

若四边形EFGH为正方形,同上应有AC⊥BD,又应有EH=EF,而EF=AC,EH=BD,故应有AC=BD;

(2)S△AEH+S△CFG=S四边形ABCD

证明:在△ABD中,

∵EH=BD,

∴△AEH∽△ABD.

∴=()2=

即S△AEH=S△ABD

同理可证:S△CFG=S△CBD

∴S△AEH+S△CFG=(S△ABD+S△CBD)=S四边形ABCD;(3)解:由(2)可知S△AEH+S△CFG=(S△ABD+S△CBD)=S四边形ABCD,

同理可得S△BEF+S△DHG=(S△ABC+S△CDA)=S四边形ABCD,

故S▱EFGH=S四边形ABCD=1.【点睛】本题考查了三角形的中位线的性质及特殊四边形的判定和性质,相似三角形的性质.18、乙【解析】

根据标准差的意义求解可得.标准差越小,稳定性越好.【详解】解:∵S甲=1.8,S乙=0.1,∴S甲>S乙,∴成绩较稳定的是乙.故答案为:乙.【点睛】本题考查标准差的意义标准差是反应一组数据离散程度最常用的一种量化形式,是表示精密确的最要指标标准差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.三、解答题(共78分)19、大巴车的平均速度为/小时,则小车的平均速度为/小时.【解析】

根据“大巴车行驶全程所需时间=小车行驶全程所需时间+小车晚出发的时间+小车早到的时间”列分式方程求解可得.【详解】设大巴车的平均速度为/小时,则小车的平均速度为/小时.根据题意,得:解得:经检验:是原方程的解,/小时答:大巴车的平均速度为/小时,则小车的平均速度为/小时.【点睛】本题主要考查分式方程的应用,解题的关键是理解题意,找到题目中蕴含的相等关系,并依据相等关系列出方程.20、(1);;;(2);(3).【解析】

(1)各式计算得到结果即可;(2)归纳总结得到一般性规律,写出即可;(3)原式各项利用得出的规律变形,计算即可求出值.【详解】解:(1);;;(2);(3)原式=.【点睛】此题考查了二次根式的加减法,以及规律型:数字的变化类,熟练掌握运算法则是解本题的关键.21、(1)AC=BD,矩形;(2)证明详见解析.【解析】

(1)根据对角线相等的平行四边形是矩形,可得答案;(2)根据全等三角形的判定与性质,可得∠ADC与∠BCD的关系,根据平行四边形的邻角互补,可得∠ADC的度数,根据矩形的判定,可得答案.【详解】(1)解:在平行四边形ABCD中,AC=BD,求证:平行四边形ABCD是矩形;(2)证明:∵四边形ABCD是平行四边形,∴AD∥CB,AD=BC.在△ADC和△BCD中,∵AC=BD,AD=BC,CD=DC,∴△ADC≌△BCD.∴∠ADC=∠BCD.又∵AD∥CB,∴∠ADC+∠BCD=180°.∴∠ADC=∠BCD=90°.∴平行四边形ABCD是矩形.【点睛】本题考查了矩形的判定,利用全等三角形的判定与性质得出∠ADC=∠BCD是解题关键.22、(1)见解析(2)①P(0,)或(0,-4)②-8≤m≤-或≤m≤1【解析】

(1)根据A点坐标求出∠AOF=60°,再根据旋转的特点得到AO=AF,故可求解;(2)①设P(0,a)根据等腰三角形的性质分AP=OP和AO=OP,分别求出P点坐标即可;②分旋转过程中在第三象限时到轴的距离等于与旋转到第四象限时到轴的距离等于,再求出当旋转180°时的坐标,即可得到m的取值.【详解】(1)如图,过A点作AH⊥x轴,∵∴OH=2,AH=2∴AO=故AO=2OH∴∠OAH=30°∴∠AOF=90°-∠OAH=60°∵旋转∴AO=AF∴△AOF是等边三角形;(2)①设P(0,a)∵是等腰三角形当AP=OP时,(2-0)2+(2-a)2=a2解得a=∴P(0,)当AO=OP时,OP=AO=4∴P(0,-4)故为等腰三角形时,求点的坐标是(0,)或(0,-4);②旋转过程中点的对应点为,当开始旋转,至到轴的距离等于时,m的取值为-8≤m≤-;当旋转到第四象限,到轴的距离等于时,m=当旋转180°时,设C’的坐标为(x,y)∵C、关于A点对称,∴解得∴(1,)∴m的取值为≤m≤1,综上,当点到轴的距离大于或等于时,求的范围是-8≤m≤-或≤m≤1.【点睛】此题主要考查旋转综合题,解题的关键是熟知等边三角形的判定、等腰三角形的性质、勾股定理、对称性的应用.23、(1)见解析;(2).【解析】

(1)直接利用直角三角形的性质得出,再利用DE∥BC,得出∠2=∠3,进而得出答案;(2)利用已知得出在Rt△BCD中,∠3=60°,,得出DB的长,进而得出EC的长.【详解】(1)证明:∵AD⊥DB,点E为AB的中点,∴.∴∠1=∠2.∵DE∥BC,∴∠2=∠3.∴∠1=∠3.∴BD平分∠ABC.(2)解:∵AD⊥DB,∠A=30°,∴∠1=60°.∴∠3=∠2=60°.∵∠BCD=90°,∴∠4=30°.∴∠CDE=∠2+∠4=90°.在Rt△BCD中,∠3=60°,,∴DB=2.∵DE=BE,∠1=60°,∴DE=DB=2.∴.【点睛】此题主要考查了直角三角形斜边上的中线与斜边的关系,正确得出DB,DE的长是解题关键.24、见解析【解析】试题分析:(1)分别利用等边三角形的判定方法以及直角三角形的性质和三角形中位线定理得出答案;(2)直接利用利用勾股定理得出答案.解:(1)∵AC=BC=a,∠C=60°,∴△ABC是等边三角形,∴AB=a;∵AC=BC=b,∠C=90°,∴AB=b,∵取AC、BC的中点D、E,∴DE∥AB,DE=AB,量得DE=c,则AB=2c(三角形中位线定理);故答案为a,b,2c,三角形中位线定理;(2)方法不唯一,如:图5,选取点C,使∠CAB=90°,AC=b,BC=a,则AB=.【点评】此题主

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论