2024届江苏省泰兴市黄桥教育联盟八年级数学第二学期期末检测试题含解析_第1页
2024届江苏省泰兴市黄桥教育联盟八年级数学第二学期期末检测试题含解析_第2页
2024届江苏省泰兴市黄桥教育联盟八年级数学第二学期期末检测试题含解析_第3页
2024届江苏省泰兴市黄桥教育联盟八年级数学第二学期期末检测试题含解析_第4页
2024届江苏省泰兴市黄桥教育联盟八年级数学第二学期期末检测试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省泰兴市黄桥教育联盟八年级数学第二学期期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,A、B、C、D四点都在⊙O上,若OCAB,AOC70,则圆周角D的度数等于()A.70 B.50 C.35 D.202.菱形的对角线长分别为6和8,则该菱形的面积是()A.24 B.48 C.12 D.103.某校把学生的纸笔测试、实践能力、成长记录三项成绩分别按50%,20%,30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是()纸笔测试实践能力成长记录甲908395乙889095丙908890A.甲 B.乙、丙 C.甲、乙 D.甲、丙4.若化简的结果为,则的取值范围是()A.一切实数 B. C. D.5.如图,已知一次函数y=kx+b的图象经过A、B两点,那么不等式kx+b>0的解集是()A.x>3 B.x<3 C.x>5 D.x<56.如图,在菱形ABCD中,对角线AC、BD相交于点O,,则四边形AODE一定是()A.正方形 B.矩形 C.菱形 D.不能确定7.如图所示,在矩形中,,,矩形内部有一动点满足,则点到,两点的距离之和的最小值为().A. B. C. D.8.多项式因式分解时,应提取的公因式为()A. B. C. D.9.如图,在▱ABCD中,AB=3,BC=5,∠ABC的平分线交AD于点E,则DE的长为()A.5 B.4 C.3 D.210.已知函数y1=和y2=ax+5的图象相交于A(1,n),B(n,1)两点.当y1>y2时,x的取值范围是()A.x≠1 B.0<x<1 C.1<x<4 D.0<x<1或x>4二、填空题(每小题3分,共24分)11.当___________________时,关于的分式方程无解12.新世纪百货大楼“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”儿童节,商场决定采取适当的降价措施.经调査,如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,则每件童装应降价多少元?设每件童裝应降价x元,可列方程为.13.计算:(1)=______;(2)=______;(3)=______.14.“两直线平行,内错角相等”的逆命题是__________.15.如图,在直角三角形ABC中,∠C=90°,AB=10,AC=8,点E、F分别为AC和AB的中点,则EF=____________.16.已知等腰三角形的两条边长分别是3cm、7cm,那么这个等腰三角形的周长是________cm.17.如图,在边长为2的正方形ABCD的外部作,且,连接DE、BF、BD,则________.18.如果一个多边形的每个外角都等于,那么这个多边形的内角和是______度.三、解答题(共66分)19.(10分)在平面直角坐标系中,直线经过、两点.(1)求直线所对应的函数解析式:(2)若点在直线上,求的值.20.(6分)在△ABC中,AB=AC=10,D为BC边上的中点,BD=6,连接AD.(1)尺规作图:作AC边的中垂线交AD于点P;(保留作图痕迹,不要求写作法和证明)(2)连接CP,求△DPC的周长.21.(6分)如图,在正方形中,,点是边上的动点(含端点,),连结,以所在直线为对称轴作点的对称点,连结,,,,点,,分别是线段,,的中点,连结,.(1)求证:四边形是菱形;(2)若四边形的面积为,求的长;(3)以其中两边为邻边构造平行四边形,当所构造的平行四边形恰好是菱形时,这时该菱形的面积是________.22.(8分)已知点A(4,0)及在第一象限的动点P(x,y),且x+y=5,0为坐标原点,设△OPA的面积为S.(1)求S关于x的函数表达式;(2)求x的取值范围;(3)当S=4时,求P点的坐标.23.(8分)问题:将边长为n(n≥2)的正三角形的三条边分别n等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图①,连接边长为2的正三角形三条边的中点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,共有1+3=2边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有1+3+5=32=9探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为n(n≥2)的正三角形的三条边分别n等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.24.(8分)如图,在矩形中,对角线的垂直平分线与相交于点,与相交于点,连接,.求证:四边形是菱形;25.(10分)如图,正方形ABCD中,AB=4,点E为边AD上一动点,连接CE,以CE为边,作正方形CEFG(点D、F在CE所在直线的同侧),H为CD中点,连接FH.(1)如图1,连接BE,BH,若四边形BEFH为平行四边形,求四边形BEFH的周长;(2)如图2,连接EH,若AE=1,求△EHF的面积;(3)直接写出点E在运动过程中,HF的最小值.26.(10分)如图,在△ABC中,∠ACB=90°,AC=8,BC=1.CD⊥AB于点D.点P从点A出发,以每秒1个单位长度的速度沿线段AB向终点B运动.在运动过程中,以点P为顶点作长为2,宽为1的矩形PQMN,其中PQ=2,PN=1,点Q在点P的左侧,MN在PQ的下分,且PQ总保持与AC垂直.设P的运动时间为t(秒)(t>0),矩形PQMN与△ACD的重叠部分图形面积为S(平方单位).(1)求线段CD的长;(2)当矩形PQMN与线段CD有公共点时,求t的取值范围;(3)当点P在线段AD上运动时,求S与t的函数关系式.

参考答案一、选择题(每小题3分,共30分)1、C【解析】

由垂径定理将已知角转化,再用圆周角定理求解.【详解】解:因为OC⊥AB,

由垂径定理可知,所以,∠COB=∠COA=70°,根据圆周角定理,得故选:C.【点睛】本题综合考查了垂径定理和圆周角的求法及性质.解答这类题要灵活运用所学知识解答问题,熟练掌握圆的性质是关键.2、A【解析】

由菱形的两条对角线的长分别是6和8,根据菱形的面积等于对角线积的一半,即可求得答案.【详解】解:∵菱形的两条对角线的长分别是6和8,

∴这个菱形的面积是:×6×8=1.

故选:A.【点睛】此题考查了菱形的性质.菱形的面积等于对角线积的一半是解此题的关键.3、C【解析】

利用平均数的定义分别进行计算成绩,然后判断谁优秀.【详解】由题意知,甲的总评成绩=90×50%+83×20%+95×30%=90.1,乙的总评成绩=88×50%+90×20%+95×30%=90.5,丙的总评成绩=90×50%+88×20%+90×30%=89.6,∴甲乙的学期总评成绩是优秀.故选:C.【点睛】本题考查了加权平均数的计算方法.4、B【解析】

根据完全平方公式先把多项式化简为|1−x|−|x−4|,然后根据x的取值范围分别讨论,求出符合题意的x的值即可.【详解】原式可化简为,当,时,可得无解,不符合题意;当,时,可得时,原式;当,时,可得时,原式;当,时,可得时,原式.据以上分析可得当时,多项式等于.故选B.【点睛】本题主要考查绝对值及二次根式的化简,要注意正负号的变化,分类讨论5、D【解析】

由图象可知:A(1,0),且当x<1时,y>0,即可得到不等式kx+b>0的解集是x<1,即可得出选项.【详解】解:∵一次函数y=kx+b的图象经过A、B两点,由图象可知:A(1,0),根据图象当x<1时,y>0,即:不等式kx+b>0的解集是x<1.故选:D.【点睛】此题考查一次函数与一元一次不等式,解题关键在于结合函数图象6、B【解析】

根据题意可判断出四边形AODE是平行四边形,再由菱形的性质可得出AC⊥BD,即∠AOD=90°,继而可判断出四边形AODE是矩形;【详解】证明:∵DE∥AC,AE∥BD,∴四边形AODE是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOD=∠AOD=90°,∴四边形AODE是矩形.故选B.【点睛】本题考查了菱形的性质、矩形的判定与性质、平行四边形的判定;熟练掌握矩形的判定与性质、菱形的性质是解决问题的关键.7、D【解析】

首先由,得出动点P在与AB平行且与AB的距离是2的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.【详解】解:设△ABP中AB边上的高是h.∵,∴AB•h=AB•AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=4,AE=2+2=4,∴BE=,即PA+PB的最小值为.故选D.【点睛】本题考查了轴对称−最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.8、A【解析】

分别找出系数的最大公约数,相同字母的最低指数次幂,然后即可找出公因式.【详解】=()因此多项式的公因式为故选A【点睛】本题主要考查公因式的确定。找公因式的要点是:

(1)公因式的系数是多项式各项系数的最大公约数;

(2)字母取各项都含有的相同字母;

(3)相同字母的指数取次数最低的.9、D【解析】

由在▱ABCD中,∠ABC的平分线交AD于点E,易证得△ABE是等腰三角形,继而求得答案.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AE=AB=3,∴DE=AD−AE=2.故选D.【点睛】此题考查了平行四边形的性质以及等腰三角形的判定与性质.注意证得△ABE是等腰三角形是解此题的关键.10、D【解析】

根据对称性确定直线AB的解析式,求出A、B两点坐标即可解决问题.【详解】解:如图:∵A、B关于直线y=x对称,∴AB⊥直线y=x,∴直线AB的解析式为y=-x+5,∴A(1,4),B(4,1),当y1>y2时,x的取值范围是0<x<1或x>4,故选:D.【点睛】本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握基本知识,灵活运用所学知识解决问题,属于中考常考题型.二、填空题(每小题3分,共24分)11、m=1、m=-4或m=6.【解析】

方程两边都乘以(x+2)(x-2)把分式方程化为整式方程,当分式方程有增根或分式方程化成的整式方程无解时原分式方程无解,根据这两种情形即可计算出m的值.【详解】解:方程两边都乘以(x+2)(x-2)去分母得,

2(x+2)+mx=3(x-2),

整理得(1-m)x=10,∴当m=1时,此整式方程无解,所以原分式方程也无解.

又当原分式方程有增根时,分式方程也无解,∴当x=2或-2时原分式方程无解,

∴2(1-m)=10或-2(1-m)=10,

解得:m=-4或m=6,

∴当m=1、m=-4或m=6时,关于x的方程无解.【点睛】本题考查了分式方程的无解条件.分式方程无解有两种情形:一是分式方程有增根;二是分式方程化成的整式方程无解.12、(40﹣x)(30+3x)=3.【解析】试题分析:设每件童裝应降价x元,可列方程为:(40﹣x)(30+3x)=3.故答案为(40﹣x)(30+3x)=3.考点:3.由实际问题抽象出一元二次方程;3.销售问题.13、【解析】

根据二次根式的乘法公式:和除法公式计算即可.【详解】解:(1);(2);(3).故答案为:;;.【点睛】此题考查的是二次根式的化简,掌握二次根式的乘法公式:和除法公式是解决此题的关键.14、内错角相等,两直线平行【解析】解:“两直线平行,内错角相等”的条件是:两条平行线被第三条值线索截,结论是:内错角相等.将条件和结论互换得逆命题为:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,可简说成“内错角相等,两直线平行”.15、3;【解析】

先利用勾股定理求出BC的长,然后再根据中位线定理求出EF即可.【详解】∵直角三角形ABC中,∠C=90°,AB=10,AC=8,∴BC==6,∵点E、F分别为AB、AC的中点,∴EF是△ABC的中位线,∴EF=BC=×6=3,故答案为3.【点睛】本题考查了勾股定理,三角形中位线定理,熟练掌握这两个定理的内容是解本题的关键.16、1【解析】

解∵等腰三角形的两条边长分别是3cm、7cm,∴当此三角形的腰长为3cm时,3+3<7,不能构成三角形,故排除,∴此三角形的腰长为7cm,底边长为3cm,∴此等腰三角形的周长=7+7+3=1cm,故答案为:1.17、1【解析】

连接BE,DF交于点O,由题意可证△AEB≌△AFD,可得∠AFD=∠AEB,可证∠EOF=90°,由勾股定理可求解.【详解】如图,连接BE、DF交于点O.∵四边形ABCD是正方形,∴,.∵是等腰直角三角形,∴,,∴.在和△中,∵,,,∴,∴.∵,∴,∴,,,,∴.故答案为1.【点睛】本题考查了正方形的性质,勾股定理,全等三角形判定和性质,添加恰当的辅助线构造直角三角形是本题的关键.18、1260【解析】

首先根据外角和与外角和及每个外角的度数可得多边形的边数,再根据多边形内角和公式180(n-2)计算出答案.【详解】解:∵多边形的每一个外角都等于,∴它的边数为:,∴它的内角和:,故答案为:.【点睛】此题主要考查了多边形的内角和与外角和,根据多边形的外角和计算出多边形的边数是解题关键.三、解答题(共66分)19、(1);(2)【解析】

(1)设直线AB解析式为y=kx+b,把A与B坐标代入求出k与b的值,即可确定出直线AB所对应的函数解析式;(2)把点P(a,-2)代入吧(1)求得的解析式即可求得a的值.【详解】解:(1)设直线所对应的函数表达式为.直线经过、两点,解得直线所对应的函数表达式为.(2)点在直线上,..【点睛】此题考查待定系数法求一次函数解析式,一次函数图象上点的坐标特征,解题关键在于把已知值代入解析式.20、(1)见解析;(2)1【解析】

(1)利用基本作图作AC的垂直平分线得到点P;(2)根据线段垂直平分线的性质得到PA=PC,则利用等线段代换得到△DPC的周长=DA+DC,再根据等腰三角形的性质得到AD⊥BC,利用勾股定理计算出AD=8,从而可计算出△DPC的周长.【详解】解:(1)如图,点D为所作;(2)∵AC边的中垂线交AD于点P,∴PA=PC,∴△DPC的周长=DP+DC+PC=DP+PA+DC=DA+DC,∵AB=AC=10,D为BC边上的中点,∴AD⊥BC,CD=BD=6,∴AD==8,∴△DPC的周长=8+6=1.【点睛】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了等腰三角形的性质.21、(1)证明见解析;(2);(3)或或.【解析】

(1)先利用三角形中位线定理得到,故,可得四边形为平行四边形,再根据对称性得到,即可得到,即邻边相等的平行四边形是菱形,故可求解;(2)过点作于点,过点作于点,于点,根据菱形的面积可求出,再根据中位线及正方形的性质分别求出PN,PQ,CN,AQ,设,在中,得到方程求出x即可求解;(3)过点作的垂线,分别交,于点,,分当时、当时、当时分别求出菱形的面积即可.【详解】解:(1)∵,,分别为,,的中点,∴,∴.∴四边形为平行四边形.∵与关于对称,∴,∴,∴四边形为菱形.(2)过点作于点,过点作于点,于点,如图.四边形,∴.∵为的中点,∴,∴.∵,,∴,∴.∴,∴.设,∴.在中,,即,解得,∴.(3)菱形的面积为或或.理由如下:如图,过点作的垂线,分别交,于点,.当时,点在点处,此时菱形;当时,此时是正三角形,∴,PK=BP=5cm,菱形;当时,此时是正三角形,∴则CL=CP=5cm,∴,,菱形.综上所述,菱形的面积为或或.【点睛】此题主要考查正方形的性质与判定,解题的关键是熟知菱形的性质与判定、勾股定理的应用及等边三角形的性质.22、(1)S=10﹣2x;(2)0<x<5;(3)(3,2)【解析】

(1)根据题意画出图形,由x+y=5可知y=5﹣x,再由三角形的面积公式即可得出结论;

(2)由点P(x,y)在第一象限,且x+y=5得出x的取值范围即可;

(3)把S=4代入(1)中的关系式求出x的值,进而可得出y的值.【详解】(1)如图:∵x+y=5,∴y=5﹣x,∴S=×4×(5﹣x)=10﹣2x;(2)∵点P(x,y)在第一象限,且x+y=5,∴0<x<5;(3)∵由(1)知,S=10﹣2x,∴10﹣2x=4,解得x=3,∴y=2,∴P(3,2).【点睛】本题考查的是一次函数的性质,根据题意画出图形,利用数形结合求解是解答此题的关键.23、探究三:16,6;结论:n²,n(n-1)2【解析】

探究三:模仿探究一、二即可解决问题;结论:由探究一、二、三可得:将边长为n(n≥2)的正三角形的三条边分别n等分,连接各边对应的等分点,边长为1的正三角形共有1+3+5+7+⋅⋅⋅+(2n-1)=n2个;边长为2的正三角形共有1+2+3+⋅⋅⋅+(n-1)=应用:根据结论即可解决问题.【详解】解:探究三:如图3,连接边长为4的正三角形三条边的对应四等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,共有1+3+5+7=4边长为2的正三角形有1+2+3=(1+3)×32结论:连接边长为n的正三角形三条边的对应n等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,……,第n层有(2n-1)个,共有1+3+5+7+⋅⋅⋅+(2n-1)=n边长为2的正三角形,共有1+2+3+⋅⋅⋅+(n-1)=n(n-1)2应用:边长为1的正三角形有252=625边长为2的正三角形有25×(25-1)2=300故答案为探究三:16,6;结论:n²,n(n-1)2;应用:625,【点睛】本题考查规律型问题,解题的关键是理解题意,学会模仿例题解决问题.24、见解析【解析】

根据MN是BD的垂直平分线可得OB=OD,根据两直线平行,内错角相等可得∠OBN=∠ODM,然后利用“角边角”证明△BON和△DOM全等,根据全等三角形对应边相等可得BN=MD,从而求出四边形BMDN是平行四边形,再根据线段垂直平分线上的点到两端点的距离相等可得MB=MD,然后根据邻边相等的平行四边形是菱形证明即可.【详解】∵MN是BD的垂直平分线,

∴OB=OD,∠BON=∠DOM,

∵四边形ABCD是矩形,

∴AD∥BC,

∴∠OBN=∠ODM

在△BON和△DOM中,,

∴△BON≌△DOM(ASA),

∴BN=MD,

∴四边形BMDN是平行四边形,

∵MN是BD的垂直平分线,

∴MB=MD,

∴平行四边形BMDN是菱形.【点睛】本题考查了菱形的判定,主要利用了矩形的性质,线段垂直平分线上的点到两端点的距离相等的性质,平行四边形的判定与性质,全等三角形的判定与性质,熟记各性质并准确识图是解题的关键.25、(1)8;(2);(3)3.【解析】

(1)由平行四边形的性质和正方形的性质可得EC=EF=BH,BC=DC,可证Rt△BHC≌Rt△CED,可得CH=DE,由“SAS”可证BE=EC,可得BE=EF=HF=BH=EC,由勾股定理可求BH的长,即可求四边形BEFH的周长;

(2)连接DF,过点F作FM⊥AD,交AD延长线于点M,由“AAS”可证△EFM≌△CED,可得CD=EM=4,DE=FM=3,由三角形面积公式可求解;

(3)过点F作FN⊥CD的延长线于点N,设AE=x=DM,则DE=4-x=FM,NH=4-x+2=6-x,由勾股定理可求HF的长,由二次函数的性质可求HF的最小值.【详解】解:(1)∵四边形BEFH为平行四边形

∴BE=HF,BH=EF

∵四边形EFGC,四边形ABCD都是正方形

∴EF=EC,BC=CD=4=AD

∴BH=EC,且BC=CD

∴Rt△BHC≌Rt△CED(HL)

∴CH=DE

∵H为CD中点,

∴CH=2=DE

∴AE=AD-DE=2=DE,且AB=CD,∠BAD=∠ADC=90°

∴Rt△ABE≌Rt△DCE(SAS)

∴BE=EC

∴BE=EF=HF=BH=EC

∵CH=2,BC=4

∴BH===2

∴四边形BEFH的周长=BE+BH+EF+FH=8;

(2)如图2,连接DF,过点F作FM⊥AD,交AD延长线于点M,

∵AE=1,

∴DE=3

∵∠FEM+∠CEM=90°,∠CEM+∠ECD=90°

∴∠FEM=∠ECD,且CE=EF,∠EDC=∠EMF=90°

∴△EFM≌△CED(AAS)

∴CD=EM=4,DE=FM=3,

∴DM=1,

∴S△EFH=S△EFD+S△EDH+S△DHF=×3×3+×3×2+×2×1=;

(3)如图3,过点F作FN⊥CD的延长线于点N,

由(2)可知:△EFM≌△CED

∴CD=EM,DE=FM,

∴CD=AD=EM,

∴AE=DM,

设AE=x=DM,则DE=4-x=FM,

∵FN⊥CD,FM⊥AD,ND⊥AD

∴四边形FNDM是矩形

∴FN=DM=x,FM=DN=4-x

∴NH=4-x+2=6-x

在Rt△NF

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论