2024年山东省庆云县八年级数学第二学期期末教学质量检测模拟试题含解析_第1页
2024年山东省庆云县八年级数学第二学期期末教学质量检测模拟试题含解析_第2页
2024年山东省庆云县八年级数学第二学期期末教学质量检测模拟试题含解析_第3页
2024年山东省庆云县八年级数学第二学期期末教学质量检测模拟试题含解析_第4页
2024年山东省庆云县八年级数学第二学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年山东省庆云县八年级数学第二学期期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.以下列各组线段为边,能构成直角三角形的是()A.8cm,9cm,10cm B.cm,cm,cmC.1cm,2cm,cm D.6cm,7cm,8cm2.若点A(﹣2,0)、B(﹣1,a)、C(0,4)在同一条直线上,则a的值是()A.2 B.1 C.﹣2 D.43.使函数y=6-x有意义的自变量A.x≥6 B.x≥0 C.x≤6 D.x≤04.小强骑自行车去郊游,9时出发,15时返回.如图表示他离家的路程y(千米)与相应的时刻x(时)之间的函数关系的图像.根据图像可知小强14时离家的路程是()A.13千米 B.14千米 C.15千米 D.16千米5.函数自变量x的取值范围是()A.x≥1且x≠3 B.x≥1 C.x≠3 D.x>1且x≠36.一个多边形的内角和是外角和的4倍,则这个多边形的边数是()A.8 B.9 C.10 D.117.下列计算中,正确的是()A.=5 B. C.=3 D.8.在下列式子中,x可以取1和2的是()A. B. C. D.9.下列交通标志图案中,是中心对称图形的是()A. B. C. D.10.下列运算正确的是()A. B.=4 C.=3 D.11.函数的自变量x的取值范围是()A.x≠0 B.x≠1 C.x≥1 D.x≤112.如图,圆柱形玻璃杯,高为,底面周长为,在杯内离杯底的点处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿与蜂蜜相对的点处,则蚂蚁到达蜂蜜的最短距离为().A.15 B. C.12 D.18二、填空题(每题4分,共24分)13.已知直角三角形的两边长分别为3、1.则第三边长为________.14.已知,是关于的一元二次方程的两个实根,且满足,则的值等于__________.15.化简:_________.16.八年级两个班一次数学考试的成绩如下:八(1)班46人,平均成绩为86分;八(2)班54人,平均成绩为80分,则这两个班的平均成绩为__分.17.在一频数分布直方图中共有9个小长方形,已知中间一个长方形的高等于其它8个小长方形的高的和的,且这组数据的总个数为120,则中间一组的频数为_______.18.如图,直线y=x+1与y轴交于点A1,以OA1为边,在y轴右侧作正方形OA1B1C1,延长C1B1交直线y=x+1于点A2,再以C1A2为边作正方形,…,这些正方形与直线y=x+1的交点分别为A1,A2,A3,…,An,则点Bn的坐标为_______.三、解答题(共78分)19.(8分)已知,,求代数式的值.20.(8分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象相交于第一、象限内的,两点,与轴交于点.(1)求该反比例函数和一次函数的解析式;(2)直接写出当时,的取值范围;(3)长为2的线段在射线上左右移动,若射线上存在三个点使得为等腰三角形,求的值.21.(8分)已知一次函数y=kx+b(k≠0)的图象经过点(2,-3)和(-1,3).(1)求这个一次函数的关系式;(2)画出这个一次函数的图象.22.(10分)如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为多少米?23.(10分)某学校计划在总费用元的限额内,租用汽车送名学生和名教师集体参加校外实践活动,为确保安全,每辆汽车上至少要有名教师.现有甲、乙两种大客车,它们的载客量和租金如下表所示.(1)根据题干所提供的信息,确定共需租用多少辆汽车?(2)请你给学校选择一种最节省费用的租车方案.24.(10分)解下列不等式组,并把它的解集表示在数轴上:25.(12分)如图,在中,,点在上,若,平分.(1)求的长;(2)若是中点,求线段的长.26.如图为一次函数的图象,点分别为该函数图象与轴、轴的交点.(1)求该一次函数的解析式;(2)求两点的坐标.

参考答案一、选择题(每题4分,共48分)1、C【解析】

根据勾股定理的逆定理对四组数据进行逐一判断即可.【详解】A.∵82+92≠102,∴不能构成直角三角形;B.∵,∴不能构成直角三角形;C.∵,∴能构成直角三角形;D.∵62+72≠82,∴不能构成直角三角形.故选C.【点睛】本题考查了用勾股定理的逆定理判断三角形的形状,即只要三角形的三边满足a2+b2=c2,则此三角形是直角三角形.2、A【解析】

先根据A、C两点的坐标求出过此两点的函数解析式,再把B(﹣1,a)代入此解析式即可求出a的值.【详解】设直线AC的解析式为y=kx+b(k≠0),把点A(-2,0)、C(0,4)分别代入得,解得,∴直线AC的解析式为y=2x+4,把B(-1,a)代入得-2+4=a,解得:a=2,故选A.【点睛】本题考查了一次函数图象上点的坐标特征,待定系数法等,根据题意得出该一次函数的解析式是解答此题的关键.3、C【解析】

根据被开方式是非负数列式求解即可.【详解】解:由题意,得6﹣x≥0,解得x≤6,故选:C.【点睛】本题考查了函数自变量的取值范围,函数有意义时字母的取值范围一般从几个方面考虑:①当函数解析式是整式时,字母可取全体实数;②当函数解析式是分式时,考虑分式的分母不能为0;③当函数解析式是二次根式时,被开方数为非负数.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.4、C【解析】由纵坐标看出,返回时离家的距离是30千米,由横坐标看出,返回时所用的时间是15−13=2小时,由路程与时间的关系,得返回时的速度是30÷2=15千米,由时间、速度的关系得15×1=15千米,故选:C.5、A【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须且.故选A.考点:函数自变量的取值范围,二次根式和分式有意义的条件.6、C【解析】

利用多边形的内角和公式及外角和定理列方程即可解决问题.【详解】设这个多边形的边数是n,则有(n-2)×180°=360°×4,所有n=1.故选C.【点睛】熟悉多边形的内角和公式:n边形的内角和是(n-2)×180°;多边形的外角和是360度.7、A【解析】

根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【详解】解:∵=5,故选项A正确,∵不能合并,故选项B错误,∵,故选项C错误,∵,故选项D错误,故选:A.【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.8、B【解析】

根据分式和二次根式有意义的条件即可求出答.【详解】解:A.x﹣1≠0,所以x≠1,故A不可以取1B.x﹣1≥0,所以x≥1,故B可以取1和2C.x﹣2≥0,所以x≥2,故C不可以取1D.x﹣2≠0,所以x≠2,故D不可以取2故选:B.【点睛】本题考查的是分式和二次根式有意义的条件,熟练掌握二者是解题的关键.9、C【解析】

根据中心对称图形的概念,分别判断即可.【详解】解:A、B、D不是中心对称图形,C是中心对称图形.故选C.点睛:本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.10、D【解析】

根据二次根式的加法、减法、乘法、除法法则分别进行计算即可.【详解】A.与不是同类二次根式,不能进行合并,故A选项错误;B.,故B选项错误;C.,故C选项错误;D.,正确,故选D.【点睛】本题考查了二次根式的运算,熟练掌握二次根式加法、减法、乘法、除法的运算法则是解题的关键.11、B【解析】根据题意若函数y=有意义,可得x-1≠0;解得x≠1;故选B12、A【解析】

过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,求出A′Q,CQ,根据勾股定理求出A′C即可.【详解】解:沿过A的圆柱的高剪开,得到矩形EFGH,过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,

∵AE=A′E,A′P=AP,

∴AP+PC=A′P+PC=A′C,

∵CQ=×18cm=9cm,A′Q=12cm-4cm+4cm=12cm,

在Rt△A′QC中,由勾股定理得:A′C==15cm,

故答案为A.【点睛】本题考查了勾股定理,轴对称-最短路线问题的应用,关键是找出最短路线.二、填空题(每题4分,共24分)13、4或【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为3的边是斜边时:第三边的长为:;②长为3、3的边都是直角边时:第三边的长为:;∴第三边的长为:或4.考点:3.勾股定理;4.分类思想的应用.14、-1【解析】

根据根的存在情况限定△≥0;再将根与系数的关系代入化简的式子x1•x2+2(x2+x1)+4=13,即可求解;【详解】解:∵x1,x2是关于x一元二次方程x2+(3a−1)x+2a2−1=0的两个实根,∴△=a2−6a+5≥0∴a≥5或a≤1;∴x1+x2=−(3a−1)=1−3a,x1•x2=2a2−1,∵(x1+2)(x2+2)=13,∴整理得:x1•x2+2(x2+x1)+4=13,∴2a2−1+2(1−3a)+4=13,∴a=4或a=−1,∴a=−1;故答案为−1.【点睛】本题考查一元二次方程根与系数的关系;熟练掌握根与系数的关系,一元二次方程的解法是解题的关键.15、【解析】

分子分母同时约去公因式5xy即可.【详解】解:.

故答案为.【点睛】此题主要考查了分式的约分,关键是找出分子分母的公因式.16、82.1【解析】

根据加权平均数公式,用(1)、(2)班的成绩和除以两班的总人数即可得.【详解】(分,故答案为:82.1.【点睛】本题考查了加权平均数,熟练掌握加权平均数的计算公式是解题的关键.若个数,,,,的权分别是,,,,,则叫做这个数的加权平均数.17、15【解析】

根据题意可知中间一组的频数占总的频数的,从而可以解答本题.【详解】∵频数分布直方图中共有9个小长方形,且中间一个长方形的高等于其它8个小长方形的高的和的,∴中间一组数据的频数占总频数的,而总频数为120,∴中间一组的频数为:,故答案为:15.【点睛】本题考查频数分布直方图,解答本题的关键是明确频数分布直方图表示的含义.18、(2n-1,2(n-1)).【解析】

首先求出B1,B2,B3的坐标,根据坐标找出规律即可解题.【详解】解:由直线y=x+1,知A1(0,1),即OA1=A1B1=1,

∴B1的坐标为(1,1)或[21-1,2(1-1)];

那么A2的坐标为:(1,2),即A2C1=2,

∴B2的坐标为:(1+2,2),即(3,2)或[22-1,2(2-1)];

那么A3的坐标为:(3,4),即A3C2=4,

∴B3的坐标为:(1+2+4,4),即(7,4)或[23-1,2(3-1)];

依此类推,点Bn的坐标应该为(2n-1,2(n-1)).【点睛】本题属于规律探究题,中等难度.求出点B坐标,找出规律是解题关键.三、解答题(共78分)19、【解析】

先将分解因式,然后将,代入求值即可.【详解】解:∵将,代入得:原式.【点睛】本题考查了因式分解和二次根式混合运算,熟练掌握因式分解和运算法则是解题的关键.20、(1),;(2)或;(3)-1【解析】

(1)利用待定系数法即可解决问题.

(2)利用图象法,写出y1D的图象在y2的图象上方的对应的自变量的取值即可.

(3)如图2中,分别以E,F为圆心EF为半径画圆,两圆在EF的上方交于点N,当点N在射线CA上时,射线CA上存在三个点P使得△PEF为等腰三角形.解直角三角形求出CH,EH即可.【详解】解:(1)∵A(3,5),B(a,-3)在的图象上,

∴m=15,a=-5,

∴A(3,5),B(-5,-3),

把A,B的坐标代入y1=kx+b中,得,解得:(2)观察图1可知:当y1>y2时,x的取值范围为:x>3或-5<x<1.

(3)如图2中,分别以E,F为圆心EF为半径画圆,两圆在EF的上方交于点N,当点N在射线CA上时,射线CA上存在三个点P使得△PEF为等腰三角形.

作NH⊥EF于H.

∵NE=EF=NF,NH⊥EF,

∴EH=HF=1,NH=,

∵直线AC的解析式为y=x+2,

∴∠ACF=45°,

∴CH=NH=,∴EC=CH-EH=-1【点睛】本题属于反比例函数综合题,考查了一次函数的应用,反比例函数的应用,等边三角形的判定和性质,解直角三角形等知识,解题的关键是理解题意灵活运用所学知识解决问题,属于中考常考题型.21、(1)y=-2x+1;(2)见解析.【解析】

(1)将点(2,-3)和(-1,3)代入y=kx+b,运用待定系数法即可求出该一次函数的解析式;(2)经过两点(2,-3)和(-1,3)画直线,即可得出这个一次函数的图象;【详解】解:(1)∵一次函数y=kx+b(k≠0)的图象经过点(2,-3)和(-1,3),∴;解得:∴该一次函数的解析式为y=-2x+1;(2)如图,经过两点(2,-3)和(-1,3)画直线,

即为y=-2x+1的图象;【点睛】本题主要考查了运用待定系数法求一次函数的解析式,一次函数的性质,属于基础知识,利用图象与坐标交点作出图象是解题关键,同学们应熟练掌握.22、人行通道的宽度为2米.【解析】

设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30﹣3x)m,宽为(24﹣2x)m,根据矩形绿地的面积为480m2,即可列出关于x的一元二次方程,解方程即可得出x的值,经检验后得出x=20不符合题意,此题得解.【详解】解:设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30﹣3x)m,宽为(24﹣2x)m,由已知得:(30﹣3x)•(24﹣2x)=480,整理得:x2﹣22x+40=0,解得:x1=2,x2=20,当x=20时,30﹣3x=﹣30,24﹣2x=﹣16,不符合题意,答:人行通道的宽度为2米.【点睛】本题考查了一元二次方程的应用,根据数量关系列出关于x的一元二次方程是解题的关键.23、(1)确定共需租用6辆汽车;(2)最节省费用的租车方案是租用甲种客车辆,乙种客车辆.【解析】

(1)首先根据总人数个车座确定租用的汽车数量,关键要注意每辆汽车上至少要有名教师.(2)根据题意设租用甲种客车辆,共需费用元,则租用乙种客车辆,因此可列出方程,再利用不等式列出不等式组,即可解得x的范围,在分类计算费用,选择较便宜的.【详解】解:(1)由使名学生和名教师都有座位,租用汽车辆数必需不小于辆;每辆汽车上至少要有名教师,租用汽车辆数必需不大于6辆.所以,根据题干所提供的信息,确定共需租用6辆汽车.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论