河北省迁安市2024年数学八年级下册期末质量检测模拟试题含解析_第1页
河北省迁安市2024年数学八年级下册期末质量检测模拟试题含解析_第2页
河北省迁安市2024年数学八年级下册期末质量检测模拟试题含解析_第3页
河北省迁安市2024年数学八年级下册期末质量检测模拟试题含解析_第4页
河北省迁安市2024年数学八年级下册期末质量检测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省迁安市2024年数学八年级下册期末质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,在2×2的正方形网格中,每个小正方形边长为1,点A,B,C均为格点,以点A为圆心,AB长为半径作弧,交格线于点D,则CD的长为()A. B. C. D.2﹣2.已知一次函数与反比例函数的图象相交于,两点,当时,实数的取值范围是()A.或 B.或C.或 D.3.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是A.(0,0) B.(0,1) C.(0,2) D.(0,3)4.顺次连接四边形四条边的中点,所得的四边形是菱形,则原四边形一定是()A.平行四边形 B.对角线相等的四边形C.矩形 D.对角线互相垂直的四边5.已知点A(x1,y1),B(x2,y2),C(x3,y3)都在反比例函数的图象上,且x1<x2<x3,()A.若<<,则++>0 B.若<<,则<0C.若<<,则++>0 D.若<<,则<06.若五箱苹果的质量(单位:kg)分别为18,21,18,19,20,则这五箱苹果质量的中位数和众数分别是()A.18和18 B.19和18 C.20和18 D.20和197.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为()A.8 B.4 C.6 D.无法计算8.今年,重庆市南岸区广阳镇一果农李灿收获枇杷20吨,桃子12吨,现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.李灿安排甲、乙两种货车一次性地将水果运到销售地的方案数有()A.1种 B.2种 C.3种 D.4种9.在平行四边形ABCD中,已知,,则它的周长为()A.8 B.10 C.14 D.1610.已知是关于的一元二次方程的根,则的值是()A.-1 B.3 C.1 D.-311.若A(2,y1),B(3,y2)是一次函数y=-3x+1的图象上的两个点,则y1与y2的大小关系是()A.y1<y2 B.y1=y2 C.y1>y2 D.不能确定12.下列定理中,没有逆定理的是()A.两直线平行,同位角相等B.全等三角形的对应边相等C.全等三角形的对应角相等D.在角的内部,到角的两边距离相等的点在角的平分线上二、填空题(每题4分,共24分)13.在菱形ABCD中,,,则对角线AC的长为________.14.如果n边形的每一个内角都相等,并且是它外角的3倍,那么n=______15.因式分解:________.16.某公司招聘员工一名,对甲、乙两位应试者进行了面试和笔试,他们的成绩(百分制)如下表所示:应试者面试笔试甲8690乙9283若公司将面试成绩、笔试成绩分别赋予6和4的权,则被录取的人是__________.17.如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是___________(写出一个即可).18.如图,△ABC中,已知M、N分别为AB、BC的中点,且MN=3,则AC的长为_____.三、解答题(共78分)19.(8分)某人购进一批琼中绿橙到市场上零售,已知卖出的绿橙数量x(千克)与售价y(元)的关系如下表:数量x(千克)12345…售价y(元)2+0.14+0.26+0.38+0.410+0.5…(1)写出售价y(元)与绿橙数量x(千克)之间的函数关系式;(2)这个人若卖出50千克的绿橙,售价为多少元?20.(8分)某书店准备购进甲、乙两种图书共100本,购书款不高于1118元,预这100本图书全部售完的利润不低于1100元,两种图书的进价、售价如表所示:甲种图书乙种图书进价(元/本)814售价(元/本)1826请回答下列问题:(1)书店有多少种进书方案?(2)在这批图书全部售出的条件下,(1)中的哪种方案利润最大?最大利润是多少?(请你用所学的一次函数知识来解决)21.(8分)在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连结BE.(感知)如图①,过点A作AF⊥BE交BC于点F.易证△ABF≌△BCE.(不需要证明)(探究)如图②,取BE的中点M,过点M作FG⊥BE交BC于点F,交AD于点G.(1)求证:BE=FG.(2)连结CM,若CM=1,则FG的长为.(应用)如图③,取BE的中点M,连结CM.过点C作CG⊥BE交AD于点G,连结EG、MG.若CM=3,则四边形GMCE的面积为.22.(10分)如图,在平面直角坐标系中,直线与坐标轴交于,过线段的中点作的垂线,交轴于点.(1)填空:线段,,的数量关系是______________________;(2)求直线的解析式.23.(10分)如图,抛物线y=ax2+bx﹣3过A(1,0),B(﹣3,0),直线AD交抛物线于点D,点D的横坐标为﹣2,点P(m,n)是线段AD上的动点.(1)求直线AD及抛物线的解析式;(2)过点P的直线垂直于x轴,交抛物线于点Q,求线段PQ的长度l与m的关系式,m为何值时,PQ最长?(3)在平面内是否存在整点(横、纵坐标都为整数)R,使得P,Q,D,R为顶点的四边形是平行四边形?若存在,直接写出点R的坐标;若不存在,说明理由.24.(10分)已知是等边三角形,D是BC边上的一个动点点D不与B,C重合是以AD为边的等边三角形,过点F作BC的平行线交射线AC于点E,连接BF.如图1,求证:≌;请判断图1中四边形BCEF的形状,并说明理由;若D点在BC边的延长线上,如图2,其它条件不变,请问中结论还成立吗?如果成立,请说明理由.25.(12分)(1)因式分解:;(2)解方程:26.已知四边形中,,垂足为点,.(1)如图1,求证:;(2)如图2,点为上一点,连接,,求证:;(3)在(2)的条件下,如图3,点为上一点,连接,点为的中点,分别连接,,+==,,求线段的长.

参考答案一、选择题(每题4分,共48分)1、D【解析】

由勾股定理求出DE,即可得出CD的长.【详解】解:连接AD,如图所示:∵AD=AB=2,∴DE==,∴CD=2﹣;故选D.【点睛】本题考查勾股定理;由勾股定理求出DE是解题关键.2、C【解析】

由函数图像可得y1>y2时,一次函数图象在反比例函数图象的上方,即可确定答案.【详解】解:当,表示一次函数图象在反比例函数图象上方时的取值范围,由题图可知或.故答案为C.【点睛】本题主要考查一次函数和不等式的关系,理解函数图像与不等式解集的关系是解答本题的关键.3、D【解析】

解:作B点关于y轴对称点B′点,连接AB′,交y轴于点C′,

此时△ABC的周长最小,

∵点A、B的坐标分别为(1,4)和(3,0),

∴B′点坐标为:(-3,0),则OB′=3过点A作AE垂直x轴,则AE=4,OE=1

则B′E=4,即B′E=AE,∴∠EB′A=∠B′AE,

∵C′O∥AE,

∴∠B′C′O=∠B′AE,∴∠B′C′O=∠EB′A∴B′O=C′O=3,

∴点C′的坐标是(0,3),此时△ABC的周长最小.

故选D.4、B【解析】试题分析:根据三角形中位线的性质及菱形的性质,可证四边形的对角线相等.解:如图所示,∵四边形EFGH是菱形,∴EH=FG=EF=HG=BD=AC,故AC=BD.即原四边形的对角线相等.故选B.点睛:本题主要考查中点四边形.画出图形,并利用三角形中位线与菱形的性质是解题的关键.5、B【解析】

反比例函数的图像及x1<x2<x3分别进行判断即可【详解】反比例函数的图像及x1<x2<x3分别进行判断若<<,k为负在二四象限,且x1<x2<0,x3>0,则++不一定大于0,故A错;若<<,k为正在一三象限,x1<0,0<x2<x3,则<0,故B正确;若<<,k为负在二四象限,且x1<0,0<x2<x3,则++不一定大于0,故C错;若<<,k为正在一三象限,x1<x2<0,0<x3则>0,故D错误;故选B【点睛】熟练掌握反比例函数的图像及增减性是解决本题的关键6、B【解析】

找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】把这组数据从小到大排列为:18、18、19、20、21,数据18出现了两次最多,所以18为众数;19处在第3位是中位数.所以本题这组数据的中位数是19,众数是18.故选:B.【点睛】本题考查众数,中位数,在做题时需注意①众数是出现次数最多的数,这样的数可能有几个;②在找中位数时需先给数列进行排序,如果数列的个数是奇数个,那么中位数为中间那个数,如果数列的个数是偶数个,那么中位数为中间两个数的平均数.7、A【解析】利用勾股定理,由Rt△ABC中,BC为斜边,可得AB2+AC2=BC2,代入数据可得AB2+AC2+BC2=2BC2=2×22=1.故选A.8、C【解析】

设租用甲种货车x辆,则租用乙种货车(8-x)辆,根据8辆货车可一次将枇杷20吨、桃子12吨运完,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,再结合x为整数即可得出结论.【详解】解:设租用甲种货车x辆,则租用乙种货车(8-x)辆,

依题意,得:解得:2≤x≤1.

∵x为整数,

∴x=2,3,1,

∴共有3种租车方案.

故选:C.【点睛】本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.9、D【解析】

根据“平行四边形的对边相等”结合已知条件进行分析解答即可.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD=5,AD=BC=3,∴平行四边形ABCD的周长=AB+BC+CD+AD=5+3+5+3=16故选D.【点睛】本题考查“平行四边形的对边相等”是解答本题的关键.10、B【解析】

把x=1代入一元二次方程ax2-bx-1=0即可得到a-b的值.【详解】解:把x=1代入一元二次方程ax2-bx-1=0得a-b-1=0,

所以a-b=1.

故选:B.【点睛】此题考查一元二次方程的解,解题关键在于掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.11、C【解析】

先根据一次函数的解析式判断出函数的增减性,再根据1<3即可得出结论.【详解】解:∵一次函数y=-3x+1中,k=-3<0,∴y随着x的增大而减小.∵A(1,y1),B(3,y1)是一次函数y=-3x+1的图象上的两个点,1<3,∴y1>y1.故选:C.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.也考查了一次函数的性质.12、C【解析】

写出各个定理的逆命题,判断是否正确即可.【详解】解:两直线平行,同位角相等的逆命题是同位角相等,两直线平行,正确,A有逆定理;全等三角形的对应边相等的逆命题是对应边相等的两个三角形全等,正确,B有逆定理;全等三角形的对应角相等的逆命题是对应角相等的两个三角形全等,错误,C没有逆定理;在角的内部,到角的两边距离相等的点在角的平分线上的逆命题是角的平分线上的点到角的两边距离相等,正确,D有逆定理;故选:C.【点睛】本题考查的是命题与定理,属于基础知识点,比较简单.二、填空题(每题4分,共24分)13、1【解析】

由菱形的性质可得AB=BC=1,∠DAB+∠ABC=180°,可得∠ABC=10°,可证△ABC是等边三角形,可得AC=1.【详解】如图,∵四边形ABCD是菱形∴AB=BC=1,∠DAB+∠ABC=180°∴∠ABC=10°,且AB=BC∴△ABC是等边三角形∴AC=AB=1故答案为:1【点睛】本题考查了菱形的性质,等边三角形的判定和性质,熟练运用菱形的性质是本题的关键.14、8【解析】

根据多边形内角和公式可知n边形的内角和为(n-2)·180º,n边形的外角和为360°,再根据n边形的每个内角都等于其外角的3倍列出关于n的方程,求出n的值即可.【详解】解:∵n边形的内角和为(n-2)·180º,外角和为360°,n边形的每个内角都等于其外角的3倍,∴(n-2)·180º=360°×3,解得:n=8.故答案为:8.【点睛】本题考查的是多边形的内角与外角的关系的应用,明确多边形一个内角与外角互补和外角和的特征是解题的关键.15、【解析】

首先提出公因式,然后进一步利用完全平方公式进行因式分解即可.【详解】解:原式==.故答案为:.【点睛】本题主要考查了因式分解,熟练掌握相关方法及公式是解题关键.16、乙.【解析】

根据加权平均数的计算公式进行计算即可.【详解】∵甲的面试成绩为86分,笔试成绩为90分,面试成绩和笔试成绩6和4的权,∴甲的平均成绩的是(分).∵乙的面试成绩为92分,笔试成绩为83分,面试成绩和笔试成绩6和4的权,∴乙的平均成绩的是(分).∵∴被录取的人是乙故答案为:乙.【点睛】此题考查了加权平均数的计算公式,解题的关键是计算平均数时按6和4的权进行计算.17、AB=AD(答案不唯一).【解析】已知OA=OC,OB=OD,可得四边形ABCD是平行四边形,再根据菱形的判定定理添加邻边相等或对角线垂直即可判定该四边形是菱形.所以添加条件AB=AD或BC=CD或AC⊥BD,本题答案不唯一,符合条件即可.18、6【解析】

由题意可知,MN是三角形ABC的中位线,然后依据三角形的中位线定理求解即可。【详解】解:∵M、N分别为AB、BC的中点,∴MN是△ABC的中位线,∴.AC=2MN=2×3=6.故答案为:6.【点睛】本题主要考查的是三角形的中位线定理,熟练掌握三角形的中位线定理是解题的关键.三、解答题(共78分)19、(1)y=2.1x;(2)这个人若卖出50千克的绿橙,售价为1元.【解析】

(1)根据表中所给信息,判断出y与x的数量关系,列出函数关系式即可;(2)把x=50代入函数关系式即可.【详解】(1)设售价为y(元)与绿橙数量x(千克)之间的函数关系式为y=kx+b,由已知得,,解得k=2.1,b=0;∴y与x之间的函数关系式为y=2.1x;(2)当x=50时,y=2.1×50=1.答:这个人若卖出50千克的绿橙,售价为1元.【点睛】本题考查一次函数的应用,解题的关键是明确题意可以列出相应的函数关系式,并且可以求在x一定时的函数值.20、(1)4种,甲47,乙53;甲48,乙52;甲49,乙51;甲1,乙1(2)甲47,乙53利润最大,最大利润1106元【解析】

(1)利用购书款不高于1118元,预计这100本图书全部售完的利润不低于1100元,结合表格中数据得出不等式组,求出即可;

(2)设利润为W,根据题意得W=10x+12(100-x)=-2x+1200,W随x的增大而减小,故购进甲种书:47种,乙种书:53本利润最大,代入求出即可;【详解】解:(1)设购进甲种图书x本,则购进乙书(100-x)本,根据题意得出:解得:47≤x≤1.

故有4种购书方案:甲47,乙53;甲48,乙52;甲49,乙51;甲1,乙1;(2)设利润为W,根据题意得W=10x+12(100-x)=-2x+1200,根据一次函数的性质得,W随x的增大而减小,故购进甲种书:47本,乙种书:53本,利润最大,最大利润W=-2×47+1200=1106,所以甲47,乙53利润最大,最大利润1106元.故答案为:(1)4种,甲47,乙53;甲48,乙52;甲49,乙51;甲1,乙1(2)甲47,乙53利润最大,最大利润1106元【点睛】本题考查不等式组的应用以及一次函数的性质以及最佳方案问题,正确得出不等式关系是解题关键.21、(1)证明见解析;(1)1,2.【解析】【分析】感知:利用同角的余角相等判断出∠BAF=∠CBE,即可得出结论;探究:(1)判断出PG=BC,同感知的方法判断出△PGF≌CBE,即可得出结论;(1)利用直角三角形的斜边的中线是斜边的一半,应用:借助感知得出结论和直角三角形斜边的中线是斜边的一半即可得出结论.【详解】感知:∵四边形ABCD是正方形,∴AB=BC,∠BCE=∠ABC=20°,∴∠ABE+∠CBE=20°,∵AF⊥BE,∴∠ABE+∠BAF=20°,∴∠BAF=∠CBE,在△ABF和△BCE中,,∴△ABF≌△BCE(ASA);探究:(1)如图②,过点G作GP⊥BC于P,∵四边形ABCD是正方形,∴AB=BC,∠A=∠ABC=20°,∴四边形ABPG是矩形,∴PG=AB,∴PG=BC,同感知的方法得,∠PGF=∠CBE,在△PGF和△CBE中,,∴△PGF≌△CBE(ASA),∴BE=FG;(1)由(1)知,FG=BE,连接CM,∵∠BCE=20°,点M是BE的中点,∴BE=1CM=1,∴FG=1,故答案为:1.应用:同探究(1)得,BE=1ME=1CM=6,∴ME=3,同探究(1)得,CG=BE=6,∵BE⊥CG,∴S四边形CEGM=CG×ME=×6×3=2,故答案为:2.【点睛】本题是四边形综合题,主要考查了正方形的性质,同角的余角相等,全等三角形的判定和性质,直角三角形的性质,熟练掌握相关的性质与定理、判断出CG=BE是解本题的关键.22、(1);(2)【解析】

(1)连接BC,根据线段垂直平分线性质得出BC=AC,然后根据勾股定理可得,进而得出;(2)根据一次函数解析式求出点A坐标,从而得出OA=6.设OC=x,在Rt△BOC中利用勾股定理建立方程求出OC的长,进而得出CA长度,然后利用三角形面积性质求出点M到x轴的距离,从而进一步得出M的坐标,之后根据M、C两点坐标求解析式即可.【详解】(1)如图所示,连接BC,∵MC⊥AB,且M为AB中点,∴BC=AC,∵△BOC为直角三角形,∴,∴;(2)∵直线与坐标轴交于两点,∴OA=6,OB=4,设OC=x,则BC=,∴,解得,∴△BCA面积==,设M点到x轴距离为n,则:,∴n=.∴M坐标为(3,2),∵C坐标为(,0)设CM解析式为:,则:,,∴,,∴CM解析式为:.【点睛】本题主要考查了一次函数与勾股定理的综合运用,熟练掌握相关概念是解题关键.23、(1)y=x2+2x﹣1;(2)当m=-时,PQ最长,最大值为;(1)R1(﹣2,﹣2),R2(﹣2,﹣4),R1(﹣2,﹣1),R4(﹣2,﹣5),R5(0,﹣1).【解析】

(1)根据待定系数法,可得抛物线的解析式;根据自变量与函数值的对应关系,可得D点坐标,再根据待定系数法,可得直线的解析式;(2)根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;(1)根据PQ的长是正整数,可得PQ,根据平行四边形的性质,对边平行且相等,可得DR的长,根据点的坐标表示方法,可得答案【详解】解:(1)将A(1,0),B(﹣1,0)代入y=ax2+bx﹣1得:解得:∴抛物线的解析式为:y=x2+2x﹣1,当x=﹣2时,y=(﹣2)2﹣4﹣1=﹣1,∴D(﹣2,﹣1),设直线AD的解析式为y=kx+b,将A(1,0),D(﹣2,﹣1)代入得:解得:∴直线AD的解析式为y=x﹣1;因此直线AD的解析式为y=x﹣1,抛物线的解析式为:y=x2+2x﹣1.(2)∵点P在直线AD上,Q抛物线上,P(m,n),∴n=m﹣1Q(m,m2+2m﹣1)∴PQ的长l=(m﹣1)﹣(m2+2m﹣1)=﹣m2﹣m+2(﹣2≤m≤1)∴当m=时,PQ的长l最大=﹣()2﹣()+2=.答:线段PQ的长度l与m的关系式为:l=﹣m2﹣m+2(﹣2≤m≤1)当m=时,PQ最长,最大值为.(1)①若PQ为平行四边形的一边,则R一定在直线x=﹣2上,如图:∵PQ的长为0<PQ≤的整数,∴PQ=1或PQ=2,当PQ=1时,则DR=1,此时,在点D上方有R1(﹣2,﹣2),在点D下方有R2(﹣2,﹣4);当PQ=2时,则DR=2,此时,在点D上方有R1(﹣2,﹣1),在点D下方有R4(﹣2,﹣5);②若PQ为平行四边形的一条对角线,则PQ与DR互相平分,此时R与点C重合,即R5(0,﹣1)综上所述,符合条件的点R有:R1(﹣2,﹣2),R2(﹣2,﹣4),R1(﹣2,﹣1),R4(﹣2,﹣5),R5(0,﹣1).答:符合条件的点R共有5个,即:R1(﹣2,﹣2),R2(﹣2,﹣4),R1(﹣2,﹣1),R4(﹣2,﹣5),R5(0,﹣1).【点睛】此题考查一元二次方程-用待定系数法求解析式,二次函数的性质,平行四边形的性质,解题关键在于把已知点代入解析式24、(1)见解析;(2)四边形BCEF是平行四边形,理由见解析;(3)成立,理由见解析.【解析】

(1)利用有两条边对应相等并且夹角相等的两个三角形全等即可证明△AFB≌△ADC;(2)四边形BCEF是平行四边形,因为△AFB≌△ADC,所以可得∠ABF=∠C=60°,进而证明∠ABF=∠BAC,则可得到FB∥AC,又BC∥EF,所以四边形BCEF是平行四边形;(3)易证AF=AD,AB=AC,∠FAD=∠BAC=60°,可得∠FAB=∠DAC,即可证明△AFB≌△ADC;根据△AFB≌△ADC可得∠ABF=∠ADC,进而求得∠AFB=∠EAF,求得BF∥AE,又BC∥EF,从而证得四边形BCEF是平行四边形.【详解】和都是等边三角形,,,,又,,,在和中,,≌;由得≌,,又,,,又,四边形BCEF是平行四边形;成立,理由如下:和都是等边三角形,,,,又,,,在和中,,≌;,又,,,,,又,四边形BCEF是平行四边形.【点睛】本题考查了等边三角形的性质,全等三角形的判定与性质,平行四边形的判定等,熟练掌握相关的性质与定理是解题的关键.25、(1);(2).【解析】

(1)提取公因式-x后再利用完全平方公式分解因式即可;(2)方程两边同乘以(x+3)(x-3),化分式方程为整式方程,解整式方程求得x的值,检验即可得分式方程的解.【详解】(1)原式(2),令代入,∴原分式方程的解为:,【点睛】本题考查了因式分解及解分式方程,正确利用提公因式法及公式法分解因式时解决(1)题的关键;解决(2)题要注意验根.26、(1)见解析;(2)见解析;(3)【解析】

(1)如图1中,作DF⊥BC延长线于点F,垂足为F.证明△ABH≌△DCF(HL),即可解决问题.

(2)如图2中,设∠BAH=α,则∠B=90°−α;设∠ADE=β则∠CED=2∠ADE+2∠BAH=2α+2β.证明∠ECD=∠EDC即可.

(3)延长CM交DA延长线于点N,连接EN,首先证明△ECD为等边三角形,延长PD到K使DK=EQ,证明△EQC≌△DKC(SAS),推出∠DCK=∠ECQ,QC=KC,推出∠PCK=∠DCK+∠PCD=30°=∠PCQ,连接PQ.证明△PQC≌△PKC(SAS)推出PQ=PK,可得PK=PD+DK=PD+EQ=5+2=7,作PT⊥QD于T,∠PDT=60°,∠TPD=30°,作CR⊥ED于R,勾股定理解直角三角形求出RC,RQ即可解决问题.【详解】(1)证明:如图1中,作DF⊥BC延长线于点F,垂足为F.∵AH⊥BC,

∴∠AHB=∠DFC=90°,

∵AD∥BC,

∴∠ADF+∠AFD=180°,

∴∠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论