四川省岳池县联考2024届数学八年级下册期末质量检测模拟试题含解析_第1页
四川省岳池县联考2024届数学八年级下册期末质量检测模拟试题含解析_第2页
四川省岳池县联考2024届数学八年级下册期末质量检测模拟试题含解析_第3页
四川省岳池县联考2024届数学八年级下册期末质量检测模拟试题含解析_第4页
四川省岳池县联考2024届数学八年级下册期末质量检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省岳池县联考2024届数学八年级下册期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2 B.∠BAD=∠BCD C.AO=CO D.AC⊥BD2.在平行四边形中,下列结论一定成立的是()A. B. C. D.3.如果点在正比例函数的图像上,那么下列等式一定成立的是()A. B. C. D.4.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:班级参加人数平均数中位数方差甲55135149191乙55135151110某同学分析上表后得出如下结论:①甲、乙两班学生的平均成绩相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论中,正确的是()A.①② B.②③ C.①③ D.①②③5.已知函数y=2x+k-1的图象经过第一、三、四象限,则k的值可以是()A.3 B.2 C.1 D.06.下列二次根式化简的结果正确的是()A. B. C. D.7.若点A(–2,)、B(–1,)、C(1,)都在反比例函数(为常数)的图像上,则、、的大小关系为()A. B. C. D.8.已知y=(k−3)x+2是一次函数,那么k的值为()A.±3 B.3 C.−3 D.±19.如果成立,那么实数a的取值范围是()A. B. C. D.10.计算结果正确的是()A. B. C. D.二、填空题(每小题3分,共24分)11.已知点,关于x轴对称,则________.12.如图菱形ABCD的对角线AC,BD的长分别为12cm,16cm,则这个菱形的周长为____.13.如图,Rt△OAB的两直角边OA、OB分别在x轴和y轴上,,,将△OAB绕O点顺时针旋转90°得到△OCD,直线AC、BD交于点E.点M为直线BD上的动点,点N为x轴上的点,若以A,C,M,N四点为顶点的四边形是平行四边,则符合条件的点M的坐标为______.14.如图,在中,为边上一点,以为边作矩形.若,,则的大小为______度.15.如图,一棵大树在离地面4米高的处折断,树顶落在离树底端的5米远处,则大树折断前的高度是______米(结果保留根号).16.如图,菱形的对角线交于点为边的中点,如果菱形的周长为,那么的长是__________.17.正五边形的内角和等于______度.18.如图,在四边形中,,,,,且,则______度.三、解答题(共66分)19.(10分)如图,已知直线l1:y=2x+3,直线l2:y=﹣x+5,直线l1、l2分别交x轴于B、C两点,l1、l2相交于点A.(1)求A、B、C三点坐标;(2)求△ABC的面积.20.(6分)我市从2018年1月1日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8万元购进A、B两种型号的电动自行车共30辆,其中每辆B型电动自行车比每辆A型电动自行车多500元.用5万元购进的A型电动自行车与用6万元购进的B型电动自行车数量一样.(1)求A、B两种型号电动自行车的进货单价;(2)若A型电动自行车每辆售价为2800元,B型电动自行车每辆售价为3500元,设该商店计划购进A型电动自行车m辆,两种型号的电动自行车全部销售后可获利润y元.写出y与m之间的函数关系式;(3)该商店如何进货才能获得最大利润;此时最大利润是多少元.21.(6分)小明一家利用元旦三天驾车到某景点旅游.小汽车出发前油箱有油36L,行驶若干小时后,途中在加油站加油若干升.油箱中余油量q(升)与行驶时间t(小时)之间的关系如图所示.根据图象回答下列问题:(1)小汽车行驶小时后加油,中途加油升;(2)求加油前油箱余油量q与行驶时间t的函数关系式;(3)如果小汽车在行驶过程中耗油量速度不变,加油站距景点200km,车速为80km/h,要到,达目的地,油箱中的油是否够用?请说明理由.22.(8分)如图,在△ABC中,∠ACB=90°,BC=AC=6,D是AB边上任意一点,连接CD,以CD为直角边向右作等腰直角△CDE,其中∠DCE=90°,CD=CE,连接BE.(1)求证:AD=BE;(2)当△CDE的周长最小时,求CD的值;(3)求证:.23.(8分)如图,AE∥BF,AC平分∠BAE,交BF于点C,BD平分∠ABC,交AE于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)若AB=5,AC=6,求AE,BF之间的距离.24.(8分)(1);(2).25.(10分)如图,将一矩形纸片OABC放在平面直角坐标系中,O(1,1),A(6,1),C(1,3),动点F从点O出发以每秒1个单位长度的速度沿OC向终点C运动,运动秒时,动点E从点A出发以相同的速度沿AO向终点O运动,当点E、F其中一点到达终点时,另一点也停止运动设点E的运动时间为t:(秒)(1)OE=,OF=(用含t的代数式表示)(2)当t=1时,将△OEF沿EF翻折,点O恰好落在CB边上的点D处①求点D的坐标及直线DE的解析式;②点M是射线DB上的任意一点,过点M作直线DE的平行线,与x轴交于N点,设直线MN的解析式为y=kx+b,当点M与点B不重合时,S为△MBN的面积,当点M与点B重合时,S=1.求S与b之间的函数关系式,并求出自变量b的取值范围.26.(10分)先化简(1+)÷,再选择一个恰当的x值代人并求值.

参考答案一、选择题(每小题3分,共30分)1、D【解析】

根据平行四边形的对边平行和平行线的性质可对A进行判断;根据平行四边形的对角相等可对B进行判断;根据平行四边形的对边相等可对A进行判断;根据平行四边形的对角线互相平分可对D进行判断.【详解】A、在▱ABCD中,∵AB∥CD,∴∠1=∠2,所以A选项结论正确;B、在▱ABCD中,∠BAD=∠BCD,所以B选项结论正确;C、在▱ABCD中,AO=CO,所以C选项的结论正确;D、在▱ABCD中,OA=OC,OB=OD,所以D选项结论错误.故选D.【点睛】本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.2、D【解析】

根据平行四边形的性质即可解决问题【详解】解:∵四边形ABCD是平行四边形,∴,AD∥BC,∴故选:D【点睛】本题考查学生对平行四边形概念的掌握情况,平行四边形对边平行且相等,对角相等,邻角互补,对角线互相平分.解题的关键是熟练掌握平行四边形的性质,属于中考常考题型.3、D【解析】

由函数图象与函数表达式的关系可知,点A满足函数表达式,可将点A的坐标代入函数表达式,得到关于a、b的等式;再根据等式性质将关于a、b的等式进行适当的变形即可得出正确选项.【详解】∵点A(a,b)是正比例函数图象上的一点,∴,∴.故选D.【点睛】此题考查正比例函数,解题关键在于将点A的坐标代入函数表达式.4、D【解析】分析:根据平均数、中位数、方差的定义即可判断;详解:由表格可知,甲、乙两班学生的成绩平均成绩相同;根据中位数可以确定,乙班优秀的人数多于甲班优秀的人数;根据方差可知,甲班成绩的波动比乙班大.故①②③正确,故选D.点睛:本题考查平均数、中位数、方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5、D【解析】

由一次函数图象经过的象限可得出k-1<0,解之可得出k的取值范围,再对照四个选项即可得出结论.【详解】∵函数y=2x+k-1的图象经过第一、三、四象限,∴k-1<0,解得:k<1.故选D.【点睛】本题考查了一次函数图象与系数的关系,牢记“k>0,b<0⇔y=kx+b的图象在一、三、四象限”是解题的关键.6、B【解析】

二次根式的化简:①利用二次根式的基本性质进行化简;②利用积的算术平方根的性质和商的算术平方根的性质进行化简.【详解】解:,故A错误;,故B正确;,故C错误;,故D错误.故选:.【点睛】本题考查了二次根式化简,熟练掌握化简二次根式是解题的关键.7、C【解析】

首先根据可得反比例函数的图象在第一、三象限,因此可得在x的范围内,随着x的增大,y在减小,再结合A、B、C点的横坐标即可得到、、的大小关系.【详解】解:根据,可得反比例函数的图象在第一、三象限因此在x的范围内,随着x的增大,y在减小因为A、B两点的横坐标都小于0,C点的横坐标大于0因此可得故选C.【点睛】本题主要考查反比例函数的性质,关键在于判断反比例函数的系数是否大于0.8、C【解析】

根据题意直接利用一次函数的定义,进行分析得出k的值即可.【详解】解:∵y=(k−2)x+2是一次函数,∴|k|-2=2,k-2≠0,解得:k=-2.故选:C.【点睛】本题主要考查一次函数的定义,注意掌握一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为2.9、B【解析】

即故选B.10、A【解析】

直接根据进行计算即可.【详解】解:;故选:A.【点睛】本题考查了二次根式的计算与化简,解题的关键是熟练掌握二次根式的运算法则.二、填空题(每小题3分,共24分)11、【解析】

根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即可求出答案.【详解】解:∵点,关于x轴对称,

∴,

∴.

故答案为:.【点睛】此题主要考查了关于x、y轴对称点的坐标特点,关键是熟练掌握坐标的变化规律.12、40cm【解析】

根据菱形的对角线互相垂直平分可得AC⊥BD,OA=AC,OB=BD,再利用勾股定理列式求出AB,然后根据菱形的四条边都相等列式计算即可得解.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=×12=6cm,OB=BD=×16=8cm,根据勾股定理得,,所以,这个菱形的周长=4×10=40cm.故答案为:40cm.【点睛】本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,需熟记.13、或.【解析】

由B、D坐标可求得直线BD的解析式,当M点在x轴上方时,则有CM∥AN,则可求出点M的坐标,代入直线BD解析式可求得M点的坐标,当M点在x轴下方时,同理可求得点M点的纵坐标,则可求得M点的坐标;【详解】∵,,∴OA=2,OB=4,∵将△OAB绕O点顺时针旋转90°得到△OCD,∴OC=OA=2,OD=OB=4,AB=CD,可知,,设直线BD的解析式为,把B、D两点的坐标代入得:,解得,∴直线BD的解析式为,当M点在x轴上方时,则有CM∥AN,即CM∥x轴,∴点M到x轴的距离等于点C到x轴的距离,∴M点的纵坐标为2,在中,令,可得,∴,当M点在x轴下方时,M点的纵坐标为-2,在中,令,可得,∴,综上所述,M的坐标为或.【点睛】本题主要考查了一次函数的综合,准确利用知识点是解题的关键.14、【解析】

利用三角形内角和求出∠B的度数,利用平行四边形的性质即可解答问题.【详解】解:在矩形AEFG中,∠AEF=90°

∵∠AEB+∠AEF+∠CEF=180°,

∠CEF=15°

∴∠AEB=75°

∵∠BAE+∠B+∠AEB=180°

∠BAE=40°

∴∠B=65°

∵∠D=∠B

∴∠D=65°

故答案为65°【点睛】考察了平行四边形的性质及三角形的内角和,掌握平行四边形的性质是解题的关键.15、()【解析】

设出大树原来高度,用勾股定理建立方程求解即可.【详解】设这棵大树在折断之前的高度为x米,根据题意得:42+52=(x﹣4)2,∴x=4或x=40(舍),∴这棵大树在折断之前的高度为(4)米.故答案为:().【点睛】本题是勾股定理的应用,解答本题的关键是把实际问题转化为数学问题来解决.此题也可以直接用算术法求解.16、【解析】

直接利用菱形的性质得出其边长以及对角线垂直,进而利用直角三角形的性质得出EO的长.【详解】解:∵菱形ABCD的周长为12,∴AD=3,∠AOD=90°,∵E为AD边中点,∴OE=AD=.故答案为:.【点睛】本题主要考查了菱形的性质以及直角三角形的性质(直角三角形斜边上的中线等于斜边的一半),正确掌握直角三角形的性质是解题关键.17、540【解析】

过正五边形五个顶点,可以画三条对角线,把五边形分成3个三角形∴正五边形的内角和=3180=540°18、1【解析】

根据勾股定理可得AC的长度,再利用勾股定理逆定理可证明∠DAC=90°,进而可得∠BAD的度数.【详解】∵AB=2,BC=2,∠ABC=90°,∴AC=,,∠BAC=45°,

∵12+(2)2=32,

∴∠DAC=90°,

∴∠BAD=90°+45°=1°,

故答案是:1.【点睛】考查了勾股定理和勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.三、解答题(共66分)19、(1)A(,),B(),C(5,0)(2)【解析】解:(1)由题意得,令直线l1、直线l2中的y为0,得:x1=-,x2=5,由函数图象可知,点B的坐标为(-,0),点C的坐标为(5,0),∵l1、l2相交于点A,∴解y=2x+3及y=-x+5得:x=,y=∴点A的坐标为(,);(2)由(1)题知:|BC|=,又由函数图象可知S△ABC=×|BC|×|yA|=××=20、(1)A、B两种型号电动自行车的进货单价分别为2500元3000元;(2)y=﹣200m+15000(20≤m≤30);(3)m=20时,y有最大值,最大值为11000元.【解析】

(1)设A、B两种型号电动自行车的进货单价分别为x元、(x+500)元,根据用5万元购进的A型电动自行车与用6万元购进的B型电动自行车数量一样,列分式方程即可解决问题;(2)根据总利润=A型的利润+B型的利润,列出函数关系式即可;(3)利用一次函数的性质即可解决问题.【详解】解:(1)设A、B两种型号电动自行车的进货单价分别为x元、(x+500)元,由题意:=,解得:x=2500,经检验:x=2500是分式方程的解,答:A、B两种型号电动自行车的进货单价分别为2500元3000元;(2)y=300m+500(30﹣m)=﹣200m+15000(20≤m≤30);(3)∵y=300m+500(30﹣m)=﹣200m+15000,∵﹣200<0,20≤m≤30,∴m=20时,y有最大值,最大值为11000元.【点睛】本题考查了分式方程的应用,一次函数的应用等知识,读懂题意,找准等量关系列出方程,找准数量关系列出函数关系是解题的关键.21、(1)3;24;(2)Q=﹣10t+36(0≤t≤3);(3)油箱中的油是够用的.【解析】试题分析::(1)观察图中数据可知,行驶3小时后油箱剩油6L,加油加至30L;(2)先根据图中数据把每小时用油量求出来,即:(36-6)÷3=10L,再写出函数关系式;(3)先要求出从加油站到景点需行几小时,然后再求需用多少油,便知是否够用.试题解析:(1)从图中可知汽车行驶3h后加油,中途加油24L;(2)根据分析可知Q=-10t+36(0≤t≤3);(3)油箱中的油是够用的.∵200÷80=2.5(小时),需用油10×2.5=25L<30L,∴油箱中的油是够用的.考点:一次函数的应用.22、(1)见解析;(1);(3)见解析【解析】

(1)先判断出∠ACD=∠BCE,得出△ADC≌△CBE(SAS),即可得出结论;

(1)先判断出DE=CD,进而得出△CDE的周长为(1+)CD,进而判断出当CD⊥AB时,CD最短,即可得出结论;

(3)先判断出∠A=∠ABC=45°,进而判断出∠DBE=90°,再用勾股定理得出BE1+DB1=DE1,即可得出结论.【详解】证明:(1)∵∠ACB=∠DCE=90°,∴∠1+∠3=90°,∠1+∠3=90°,∴∠1=∠1.∵BC=AC,CD=CE,∴△CAD≌△CBE,∴AD=BE.(1)∵∠DCE=90°,CD=CE.∴由勾股定理可得CD=.∴△CDE周长等于CD+CE+DE==.∴当CD最小时△CDE周长最小.由垂线段最短得,当CD⊥AB时,△CDE的周长最小.∵BC=AC=6,∠ACB=90°,∴AB=6.此时AD=CD=.∴当CD时,△CDE的周长最小.(3)由(1)易知AD=BE,∠A=∠CBA=∠CBE=45°,∴∠DBE=∠CBE+∠CBA=90°.在Rt△DBE中:.在Rt△CDE中:.∴.【点睛】此题是三角形综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理,判断出CD⊥AB时,CD最短是解本题的关键.23、(1)证明见解析;(2).【解析】试题分析:(1)根据平行线的性质得出∠ADB=∠DBC,∠DAC=∠BCA,根据角平分线定义得出∠DAC=∠BAC,∠ABD=∠DBC,求出∠BAC=∠ACB,∠ABD=∠ADB,根据等腰三角形的判定得出AB=BC=AD,根据平行四边形的判定得出四边形ABCD是平行四边形,即可得出答案;(2)先求出BD的长,求出菱形的面积,即可求出答案.试题解析:(1)∵AE∥BF,∴∠ADB=∠DBC,∠DAC=∠BCA,∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∴∠BAC=∠ACB,∠ABD=∠ADB,∴AB=BC,AB=AD∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,∵AD=AB,∴四边形ABCD是菱形;(2)过A作AM⊥BC于M,则AM的长是AE,BF之间的距离,∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=AC=×6=3,∵AB=5,∴在Rt△AOB中,由勾股定理得:BO=4,∴BD=2BO=8,∴菱形ABCD的面积为×AC×BD=×6×8=24,∵四边形ABCD是菱形,∴BC=AB=5,∴5×AM=24,∴AM=,即AE,BF之间的距离是.考点:1.菱形的判定和性质,2.平行四边形的判定,3.平行线的性质,4.等腰三角形的判定24、(1);(2).【解析】

(1)先利用平方差公式化简后面两个括号,再根据二次根式的运算法则进行计算即可得出答案;(2)先利用平方差公式和完全平方公式进行展开,再根据二次根式的运算法则进行计算即可得出答案.【详解】解:(1)原式=(2)原式=【点睛】本题考查的是二次根式的运算,难度适中,需要熟练掌握二次根式的运算法则.25、(1)6-t,+t;(2)①直线DE的解析式为:y=-;②【解析】

(1)由O(1,1),A(6,1),C(1,3),可得:OA=6,OC=3,根据矩形的对边平行且相等,可得:AB=OC=3,BC=OA=6,进而可得点B的坐标为:(6,3),然后根据E点与F点的运动速度与运动时间即可用含t的代数式表示OE,OF;(2)①由翻折的性质可知:△OPF≌△DPF,进而可得:DF=OF,然后由t=1时,DF=OF=,CF=OC-OF=,然后利用勾股定理可求CD的值,进而可求点D和E的坐标;利用待定系数可得直线DE的解析式;②先确定出k的值,再分情况计算S的表达式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论