2024年陕西省西安电子科技大附中八年级下册数学期末监测试题含解析_第1页
2024年陕西省西安电子科技大附中八年级下册数学期末监测试题含解析_第2页
2024年陕西省西安电子科技大附中八年级下册数学期末监测试题含解析_第3页
2024年陕西省西安电子科技大附中八年级下册数学期末监测试题含解析_第4页
2024年陕西省西安电子科技大附中八年级下册数学期末监测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年陕西省西安电子科技大附中八年级下册数学期末监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.为迎接“劳动周”的到来,某校将九(1)班50名学生本周的课后劳动时间比上周都延长了10分钟,则该班学生本周劳动时间的下列数据与上周比较不发生变化的是()A.平均数B.中位数C.众数D.方差2.下列二次根式中,是最简二次根式的是()A. B. C. D.3.如图,在菱形ABCD中,对角线AC、BD相较于点O,BD=8,BC=5,AE⊥BC于点E,则AE的长为()A.5 B. C. D.4.如图,在菱形ABCD中,于E,,,则菱形ABCD的周长是A.5 B.10 C.8 D.125.在函数y=1-2x自变量xA.x≠12 B.x≥12 C.x≤12 D.6.如图的中有一正方形,其中在上,在上,直线分别交于两点.若,则的长度为()A. B. C. D.7.2018年体育中考中,我班一学习小组6名学生的体育成绩如下表,则这组学生的体育成绩的众数,中位数依次为()成绩(分)474850人数231A.48,48 B.48,47.5 C.3,2.5 D.3,28.一个圆锥形的圣诞帽高为10cm,母线长为15cm,则圣诞帽的表面积为()A.75cm2 B.150cm2 C.150cm2 D.75cm29.反比例函数y=,当x的值由n(n>0)增加到n+2时,y的值减少3,则k的值为()A. B. C.﹣ D.10.下列图形,可以看作中心对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,平移折线AEB,得到折线CFD,则平移过程中扫过的面积是_____.12.如图,过x轴上任意一点P作y轴的平行线,分别与反比例函数y=(x>0),y=﹣(x>0)的图象交于A点和B点,若C为y轴任意一点.连接AB、BC,则△ABC的面积为_____.13.当x分别取值,,,,,1,2,,2007,2008,2009时,计算代数式的值,将所得的结果相加,其和等于______.14.如果一次函数y=kx+2的函数值y随着x的值增大而减小,那么k的取值范围是_____.15.如图,矩形纸片ABCD的边长AB=4,AD=2,将矩形纸片沿EF折叠,使点A与点C重合,折叠后在其一面着色(如图),着色部分的面积为______________.16.正n边形的一个外角的度数为60°,则n的值为.17.如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G,若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则△BCG的周长为_____.18.平行四边形ABCD的周长为20cm,对角线AC、BD相交于点O,若△BOC的周长比△AOB的周长大2cm,则CD=_____cm.三、解答题(共66分)19.(10分)如图,在四边形中,,点为的中点,,交于点,,求的长.20.(6分)某经销商从市场得知如下信息:A品牌计算器B品牌计算器进价(元/台)700100售价(元/台)900160他计划一次性购进这两种品牌计算器共100台(其中A品牌计算器不能超过50台),设该经销商购进A品牌计算器x台(x为整数),这两种品牌计算器全部销售完后获得利润为y元.(1)求y与x之间的函数关系式;(2)若要求A品牌计算器不得少于48台,求该经销商有哪几种进货方案?(3)选择哪种进货方案,该经销商可获利最大?最大利润是多少元?21.(6分)某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用8000元购进电冰箱的数量与用6400元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,其中购进电冰箱x台(33≤x≤40),那么该商店要获得最大利润应如何进货?22.(8分)在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?23.(8分)如图,直线分别交x轴、y轴于A、B两点,直线BC与x轴交于点,P是线段AB上的一个动点点P与A、B不重合.(1)求直线BC所对应的的函数表达式;(2)设动点P的横坐标为t,的面积为S.①求出S与t的函数关系式,并写出自变量t的取值范围;②在线段BC上存在点Q,使得四边形COPQ是平行四边形,求此时点Q的坐标.24.(8分)如图,在凸四边形中,,.(1)利用尺规,以为边在四边形内部作等边(保留作图痕迹,不需要写作法).(2)连接,判断四边形的形状,并说明理由.25.(10分)如图,直线y=kx+b(k≠0)与两坐标轴分别交于点B、C,点A的坐标为(﹣2,0),点D的坐标为(1,0).(1)求直线BC的函数解析式.(2)若P(x,y)是直线BC在第一象限内的一个动点,试求出△ADP的面积S与x的函数关系式,并写出自变量x的取值范围.(3)在直线BC上是否存在一点P,使得△ADP的面积为3?若存在,请直接写出此时点P的坐标,若不存在,请说明理由.26.(10分)某汽车制造商对新投入市场的两款汽车进行了调查,这两款汽车的各项得分如下表所示:汽车型号安全性能省油效能外观吸引力内部配备A3123B3222(得分说明:3分﹣﹣极佳,2分﹣﹣良好,1分﹣﹣尚可接受)(1)技术员认为安全性能、省油效能、外观吸引力、内部配备这四项的占比分别为30%,30%,20%,20%,并由此计算得到A型汽车的综合得分为2.2,B型汽车的综合得分为_____;(2)请你写出一种各项的占比方式,使得A型汽车的综合得分高于B型汽车的综合得分.(说明:每一项的占比大于0,各项占比的和为100%)答:安全性能:_____,省油效能:_____,外观吸引力:_____,内部配备:_____.

参考答案一、选择题(每小题3分,共30分)1、D【解析】【分析】根据平均数,中位数,众数,方差的定义或计算公式可以分析出结果.【详解】由已知可得,平均数增加了;中位数也增加了;众数也增加了;方差不变.故选:D【点睛】本题考核知识点:数据的代表.解题关键点:理解相关定义.2、A【解析】

直接利用最简二次根式的定义分析得出答案.【详解】A.是最简二次根式,故此选项正确;B.,故此选项错误;C.,故此选项错误;D.,故此选项错误.故选A.【点睛】本题考查了最简二次根式,正确把握最简二次根式的定义是解题的关键.3、C【解析】

在中,根据求出OC,再利用面积法可得,由此求出AE即可.【详解】四边形ABCD是菱形,,,,在中,,,故,解得:.故选C.【点睛】此题主要考查了菱形的性质以及勾股定理,正确利用三角形面积求出AE的长是解题关键.4、C【解析】

连接AC,根据线段垂直平分线的性质可得AB=AC=2,然后利用周长公式进行计算即可得答案.【详解】如图连接AC,,,,菱形ABCD的周长,故选C.【点睛】本题考查了菱形的性质、线段的垂直平分线的性质等知识,熟练掌握的灵活应用相关知识是解题的关键.5、C【解析】

根据被开方式大于或等于零解答即可.【详解】由题意得1-2x≥0,∴x≤12故选C.【点睛】本题考查了函数自变量的取值范围,函数有意义时字母的取值范围一般从几个方面考虑:①当函数解析式是整式时,字母可取全体实数;②当函数解析式是分式时,考虑分式的分母不能为0;③当函数解析式是二次根式时,被开方数为非负数.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.6、D【解析】

由DE∥BC可得求出AE的长,由GF∥BN可得,将AE的长代入可求得BN.【详解】解:∵四边形DEFG是正方形,∴DE∥BC,GF∥BN,且DE=GF=EF=1,∴△ADE∽△ACB,△AGF∽△ANB,∴①,②,由①可得,,解得:,把代入②,得:,解得:,故选择:D.【点睛】本题主要考查正方形的性质及相似三角形的判定与性质,根据相似三角形的性质得出AE的长是解题的关键.7、A【解析】分析:根据中位数和众数的概念,分别求出众数(出现次数最多)和中位数(先排列再取中间一个或两个的平均数)即可求解.详解:由于48分的出现次数最多,故众数是48分,共有6名学生,所以第三个和第四个均为48分,所以中位数为48分.故选:A.点睛:此题主要考查了中位数和众数的求法,关键是掌握中位数和众数的概念和求法,灵活求解.8、A【解析】

利用圆锥的高,母线长,底面半径组成直角三角形可求得圆锥底面半径,圆锥的侧面积=底面周长×母线长÷1.【详解】解:高为10cm,母线长为15cm,由勾股定理得,底面半径==5cm,底面周长=10πcm,

侧面面积=×10π×15=75πcm1.

故选:A.【点睛】本题考查圆锥的计算,利用勾股定理,圆的周长公式和圆锥侧面积公式求解.9、D【解析】

根据函数的增减性,可得分式方程,根据解分式方程,可得答案.【详解】由题意,得﹣=3,解得k=,故选:D.【点睛】本题考查了反比例函数,利用函数的增减性得出分式方程是解题关键.10、B【解析】

根据中心对称图形的概念对各选项分析判断即可得解.【详解】、不是中心对称图形,故本选项不符合题意;、是中心对称图形,故本选项符合题意;、不是中心对称图形,故本选项不符合题意;、不是中心对称图形,故本选项不符合题意.故选:.【点睛】本题考查了中心对称图形的概念,解题关键在于中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、填空题(每小题3分,共24分)11、1.【解析】

利用平移的性质得到AE=CF,AE∥CF,BE=DF,BE∥DF,则可判断四边形AEFC和四边形BEFD都为平行四边形,然后根据平行四边形的面积公式,利用平移过程中扫过的面积=S▱AEFC+S▱BEFD进行计算.【详解】∵平移折线AEB,得到折线CFD,∴AE=CF,AE∥CF,BE=DF,BE∥DF,∴四边形AEFC和四边形BEFD都为平行四边形,∴平移过程中扫过的面积=S▱AEFC+S▱BEFD=1×3+1×3=1.故答案为:1.【点睛】此题考查平移的性质:对应边平行(或在同一直线上)且相等,平行四边形的判定定理.12、【解析】【分析】设出点P坐标,分别表示点AB坐标,由题意△ABC面积与△ABO的面积相等,因此只要求出△ABO的面积即可得答案..【详解】设点P坐标为(a,0)则点A坐标为(a,),B点坐标为(a,﹣)∴S△ABC=S△ABO=S△APO+S△OPB==,故答案为.【点睛】本题考查了反比例函数中比例系数k的几何意义,熟练掌握相关知识是解题的关键.13、1【解析】

先把和代入代数式,并对代数式化简,得到它们的和为1,然后把代入代数式求出代数式的值,再把所得的结果相加求出所有结果的和.【详解】因为,即当x分别取值,为正整数时,计算所得的代数式的值之和为1;而当时,.因此,当x分别取值,,,,,1,2,,2117,2118,2119时,计算所得各代数式的值之和为1.故答案为:1.【点睛】本题考查的是代数式的求值,本题的x的取值较多,并且除外,其它的数都是成对的且互为倒数,把互为倒数的两个数代入代数式得到它们的和为1,这样计算起来就很方便.14、k<1.【解析】

根据一次函数的性质解答即可.【详解】∵一次函数y=kx+2,函数值y随x的值增大而减小,∴k<1.故答案为:k<1.【点睛】本题考查了一次函数的图像与性质,对于一次函数y=kx+b(k为常数,k≠1),当k>1时,y随x的增大而增大;当k<1时,y随x的增大而减小.15、【解析】设BE=x,则AE=EC=CF=4-x,在Rt△ECB中,CE2=BE2+BC2,∴(4-x)2=x2+22,∴x=,CF=.S着色部分=S矩形ABCD-S△ECF=4×2-××2=16、1【解析】

解:∵正n边形的一个外角的度数为10°,∴n=310÷10=1.故答案为:1.17、+1.【解析】分析:根据面积之比得出△BGC的面积等于正方形面积的,进而依据△BCG的面积以及勾股定理,得出BG+CG的长,进而得出其周长.详解:∵阴影部分的面积与正方形ABCD的面积之比为2:1,∴阴影部分的面积为×9=6,∴空白部分的面积为9-6=1,由CE=DF,BC=CD,∠BCE=∠CDF=90°,可得△BCE≌△CDF,∴△BCG的面积与四边形DEGF的面积相等,均为×1=,设BG=a,CG=b,则ab=,又∵a2+b2=12,∴a2+2ab+b2=9+6=15,即(a+b)2=15,∴a+b=,即BG+CG=,∴△BCG的周长=+1,故答案为+1.点睛:此题考查了全等三角形的判定与性质、正方形的性质以及三角形面积问题.解题时注意数形结合思想与方程思想的应用.18、1.【解析】

根据平行四边形的性质可知,平行四边形的对角线互相平分,由于△BOC的周长比△AOB的周长大2cm,则BC比AB长7cm,所以根据周长的值可以求出AB,进而求出CD的长.【详解】解:∵平行四边形的周长为20cm,∴AB+BC=10cm;又△BOC的周长比△AOB的周长大2cm,∴BC﹣AB=2cm,解得:AB=1cm,BC=6cm.∵AB=CD,∴CD=1cm故答案为1.三、解答题(共66分)19、【解析】

连接BD,作CF⊥AB于F,由线段垂直平分线的性质得出BD=AD,AE=BE,得出∠DBE=∠DAB=30°,由直角三角形的性质得出BD=AD=2DE=2,AE=BE=DE=3,证出△BCD是直角三角形,∠CBD=90°,得出∠BCF=30°,得出BF=BC=,CF=BF=,求出EF=BE+BF=,在Rt△CEF中,由勾股定理即可得出结果.【详解】解:连接,作于,如图所示:则,点为的中点,,,,,,,,是直角三角形,,,,,,,在中,由勾股定理得:;【点睛】本题考查勾股定理,解题关键在于求得EF=BE+BF.20、(1)y=140x+1;(2)三种方案,见解析;(3)选择A50台、B50台的进货方案,经销商可获利最大,最大利润是13000元.【解析】

(1)根据利润=售价-成本,总利润=单位利润×销售量,可以求出y与x之间的函数关系式;

(2)A品牌计算器不能超过50台,A品牌计算器不得少于48台,确定自变量的取值范围,再由自变量是整数,可得由几种方案;

(3)根据一次函数的增减性,和自变量的取值范围,确定何时利润最大,并求出最大利润.【详解】(1)y=(900-700)x+(160-100)(100-x)=140x+1,答:y与x之间的函数关系式为:y=140x+1.(2)由题意得:48≤x≤50x为整数,因此x=48或x=49或x=50,故有三种进货方案,即:①A48台、B52台;②A49台、B51台;③A50台、B50台;(3)∵y=140x+1,k=140>0,∴y随x的增大而增大,∵又48≤x≤50的整数∴当x=50时,y最大=140×50+1=13000元答:选择A50台、B50台的进货方案,经销商可获利最大,最大利润是13000元.【点睛】考查一次函数的图象和性质、一元一次不等式组的解法以及不等式组的整数解等知识,联系实际、方案实际经常用到不等式的整数解,根据整数解的个数,确定方案数.21、(1)每台电冰箱的进价2000元,每台空调的进价1600元.(2)此时应购进电冰箱33台,则购进空调67台.【解析】试题分析:(1)设每台电冰箱的进价m元,每台空调的进价(m﹣400)元,根据:“用8000元购进电冰箱的数量与用6400元购进空调的数量相等”列分式方程求解可得;(2)设购进电冰箱x台,则购进空调(100﹣x)台,根据:总利润=冰箱每台利润×冰箱数量+空调每台利润×空调数量,列出函数解析式,结合x的范围和一次函数的性质可知最值情况.解:(1)设每台电冰箱的进价m元,每台空调的进价(m﹣400)元依题意得,,解得:m=2000,经检验,m=2000是原分式方程的解,∴m=2000;∴每台电冰箱的进价2000元,每台空调的进价1600元.(2)设购进电冰箱x台,则购进空调(100﹣x)台,根据题意得,总利润W=100x+150(100﹣x)=﹣50x+15000,∵﹣50<0,∴W随x的增大而减小,∵33≤x≤40,∴当x=33时,W有最大值,即此时应购进电冰箱33台,则购进空调67台.22、(1)乙队单独完成需2天;(2)在不超过计划天数的前提下,由甲、乙合作完成最省钱.【解析】

(1)求的是乙的工效,工作时间明显.一定是根据工作总量来列等量关系.等量关系为:甲20天的工作量+甲乙合作24天的工作总量=1.(2)根据题意,分别求出三种情况的费用,然后把在工期内的情况进行比较即可.【详解】解:(1)设乙队单独完成需x天.根据题意,得:.解这个方程得:x=2.经检验,x=2是原方程的解.∴乙队单独完成需2天.(2)设甲、乙合作完成需y天,则有,解得,y=36;①甲单独完成需付工程款为:60×3.5=210(万元).②乙单独完成超过计划天数不符题意,③甲、乙合作完成需付工程款为:36×(3.5+2)=198(万元).答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.23、(1)y=2x+1;(2)①S=-2t+2(0<t<1);②点Q的坐标为(,).【解析】

(1)根据函数表达式求出点B坐标,结合点C坐标求出BC的表达式;(2)①根据三角形面积求法可得S与t的表达式;②过点P作PQ∥x轴,交BC于点Q,得出P和Q的坐标,利用平行四边形的性质建立方程求解即可.【详解】解:(1)直线y=-x+1与x轴、y轴交点坐标分别为A(1,0)、B(0,1)两点.设直线BC所对应的函数关系式为y=kx+1.∵直线BC经过点C(-2,0),∴-2k+1=0,解得:k=2,∴直线BC所对应的函数关系式为y=2x+1.(2)①由题意,设点P的坐标为(t,-t+1),∴S=S△POA=×OA×yP=×1×(-t+1)=-2t+2.即S=-2t+2(0<t<1).②过点P作PQ∥x轴,交BC于点Q.∵点P的坐标为(t,-t+1),∴点Q的坐标为(,-t+1).∵四边形COPQ是平行四边形,∴PQ=OC,即.解得:t=,∴点Q的坐标为(,).【点睛】本题考查了一次函数的应用,求一次函数表达式,平行四边形的性质,解题的关键是画出图形,借助平行四边形的性质解题.24、(1)见解析;(2)四边形ABCE是菱形,理由见解析.【解析】

(1)分别以点C、D为圆心,CD长为半径画弧,在四边形ABCD内部交于点E,连接CE、DE即可得;(2)先证AB∥CE,结合AB=CE可得四边形ABCE是平行四边形,然后由AB=BC可得四边形ABCE是菱形.【详解】解:(1)如图所示,△CDE即为所求:(2)四边形ABCE是菱形,理由:∵△CDE是等边三角形,∴∠ECD=60°,CD=DE=CE,∵∠ABC+∠BCD=240°,∴∠ABC+∠BCE=180°,∴AB∥CE

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论