版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省深圳市宝安第一外国语中学数学八年级下册期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.若样本数据3,4,2,6,x的平均数为5,则这个样本的方差是()A.3 B.5 C.8 D.22.我国“一带一路”战略给沿线国家和地区带来了很大的经济效益,沿线某地区居民2017年年人均收入为3800美元,预计2019年年人均收入将达到5000美元,设2017年到2019年该地区居民年人均收入平均增长率为x,可列方程为()A.38001+C.38001+x2=3.下列关于反比例函数的说法中,错误的是()A.图象经过点 B.当时,C.两支图象分别在第二、四象限 D.两支图象关于原点对称4.如图,菱形ABCD的对角线AC、BD相交于点O,过点C作CE⊥AD于点E,连接OE,若OB=8,S菱形ABCD=96,则OE的长为()A.2 B.2 C.6 D.85.将矩形纸片按如图的方式折叠,使点B与点D都与对角线AC的中点O重合,得到菱形,若,则的长为()A. B. C. D.6.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成续时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A.平均数 B.中位数 C.众数 D.方差7.小颖八年级第一学期的数学成绩分别为:平时90分,期中86分,期末95分若按下图所显示的权重要求计算,则小颖该学期总评成绩为()A.88 B. C. D.938.为迎接“义务教育均衡发展”检查,我市抽查了某校七年级8个班的班额人数,抽查数据统计如下:52,49,56,54,52,51,55,54,这四组数据的众数是()A.52和54B.52C.53D.549.△ABC中,若AC=4,BC=2,AB=2,则下列判断正确的是()A.∠A=60° B.∠B=45° C.∠C=90° D.∠A=30°10.如图,矩形中,对角线、交于点.若,,则的长为()A.6 B.5 C.4 D.3二、填空题(每小题3分,共24分)11.如图,在中,,,,点,都在边上,的平分线垂直于,垂足为,的平分线垂直于,垂足为,则的长__________.12.在一次函数y=(k﹣3)x+2中,y随x的增大而减小,则k的取值_____.13.如图,在▱ABCD中,分别设P,Q,E,F为边AB,BC,AD,CD的中点,设T为线段EF的三等分点,则△PQT与▱ABCD的面积之比是______.14.如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB,CD相交于点P,则△PBD与△PAC的面积比为_____.15.如图,已知在中,,点是延长线上的一点,,点是上一点,,连接,、分别是、的中点,则__________.16.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.
17.在Rt△ABC中,∠A=90°,有一个锐角为10°,BC=1.若点P在直线AC上(不与点A,C重合),且∠ABP=30°,则CP的长为.18.如图,在梯形ABCD中,AD∥BC,E为BC上一点,DE∥AB,AD的长为1,BC的长为2,则CE的长为.三、解答题(共66分)19.(10分)甲、乙两名运动员进行长跑训练,两人距终点的路程(米)与跑步时间(分)之间的函数关系如图所示,根据图象所提供的信息解答问题:(1)他们在进行米的长跑训练,在0<<15的时间内,速度较快的人是(填“甲”或“乙”);(2)求乙距终点的路程(米)与跑步时间(分)之间的函数关系式;(3)当=15时,两人相距多少米?(4)在15<<20的时间段内,求两人速度之差.20.(6分)先化简,再求值:÷(a-1+),其中a=.21.(6分)为选拔参加八年级数学“拓展性课程”活动人选,数学李老师对本班甲、乙两名学生以前经历的10次测验成绩(分)进行了整理、分析(见图①):(1)写出a,b的值;(2)如要推选1名学生参加,你推荐谁?请说明你推荐的理由.22.(8分)已知与成正比例,且当时,,则当时,求的值.23.(8分)先化简再求值:÷(﹣1),其中x=.24.(8分)如图所示,△A′B′C′是△ABC经过平移得到的,△ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1+4).(1)请写出三角形ABC平移的过程;(2)分别写出点A′,B′,C′的坐标.(3)求△A′B′C′的面积.25.(10分)如图,折叠长方形的一边AD,使点D落在BC边上的点F处,BC=15,AB=9.求:(1)FC的长;(2)EF的长.26.(10分)先化简,再求值:+(x﹣2)2﹣6,其中,x=+1.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
先由平均数是5计算出x的值,再计算方差.【详解】解:∵数据3,4,2,6,x的平均数为5,∴,解得:x=10,则方差为×[(3﹣5)2+(4﹣5)2+(2﹣5)2+(6﹣5)2+(10﹣5)2]=8,故选:C.【点睛】本题考查的是平均数和方差的求法.计算方差的步骤是:①计算数据的平均数;②计算偏差,即每个数据与平均数的差;③计算偏差的平方和;④偏差的平方和除以数据个数.2、C【解析】
设2017年到2019年该地区居民年人均收入增长率为x,根据2017年和2019年该地区居民年人均收入,即可得出关于x的一元二次方程.【详解】解:设2017年到2019年该地区居民年人均收入增长率为x,
依题意,得:3800(1+x)2=5000,
故选:C【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.3、C【解析】
根据反比例函数的性质和图像的特征进行判断即可.【详解】解:A、因为,所以xy=2,(-1)×(-2)=2,故本选项不符合题意;B、当x=2时,y=1,该双曲线经过第一、三象限,在每个象限内,y随着x的增大而减小,所以当x时,0<y<1,故本选项不符合题意;C、因为k=2>0,该双曲线经过第一、三象限,故本选项错误,符合题意;D、反比例函数的两支双曲线关于原点对称,故本选项不符合题意.故选C【点睛】本题考查了反比例函数的性质.对于反比例函数,当k>0时,双曲线位于第一、三象限,且在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,双曲线位于第二、四象限,在每一个象限内,函数值y随自变量x增大而增大.4、C【解析】
由菱形的性质得出BD=16,由菱形的面积得出AC=12,再由直角三角形斜边上的中线性质即可得出结果.【详解】∵四边形ABCD是菱形,∴OA=OC,OB=OD=BD,BD⊥AC,∴BD=16,∵S菱形ABCD═AC×BD=96,∴AC=12,∵CE⊥AD,∴∠AEC=90°,∴OE=AC=6,故选C.【点睛】此题主要考查了菱形的性质、直角三角形斜边上的中线性质;熟练掌握菱形的性质是解题的关键.5、D【解析】
解:∵折叠
∴∠DAF=∠FAC,AD=AO,BE=EO,
∵AECF是菱形
∴∠FAC=∠CAB,AOE=90°
∴∠DAF=∠FAC=∠CAB
∵DABC是矩形
∴∠DAB=90°,AD=BC
∴∠DAF+∠FAC+∠CAB=90°
∴∠DAF=∠FAC=∠CAB=30°
∴AE=2OE=2BE
∵AB=AE+BE=3
∴AE=2,BE=1
∴在Rt△AEO中,AO==AD
∴BC=
故选D.6、B【解析】
根据题意,由数据的数字特征的定义,分析可得答案.【详解】根据题意,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分,7个有效评分与9个原始评分相比,最中间的一个数不变,即中位数不变,故选:B.【点睛】此题考查中位数的定义,解题关键在于掌握其定义7、B【解析】
根据加权平均数的计算公式即可得.【详解】由题意得:小颖该学期总评成绩为(分)故选:B.【点睛】本题考查了加权平均数的计算公式,熟记公式是解题关键.8、A【解析】试题分析:众数是指一组数据中出现次数最多的数字,数据52和54都出现2次,其它只出现一次,所以,众数为52和54。考点:众数的计算9、A【解析】
先利用勾股定理的逆定理得出∠B=90°,再利用三角函数求出∠A、∠C即可.【详解】∵△ABC中,AC=4,BC=2,AB=2,∴=2+,即=+,∴△ABC是直角三角形,且∠B=90°,∵AC=2AB,∴∠C=30°,∴∠A=90°-∠C=60°.故选:A.【点睛】本题考查了勾股定理的逆定理、含30度角的直角三角形的性质,如果三角形的三边长满足,那么这个三角形就是直角三角形.求出∠B=90°是解题的关键.10、B【解析】
由矩形的性质可得:∠ABC=90°,OA=OC=OB=OD=1,∠AOB=2∠ACB=60°,△AOB为等边三角形,故AB=OA=1.【详解】解:∵四边形ABCD是矩形,∴OA=OC=OB=OD=AC=1,∠ABC=90°,∴∠OBC=∠ACB=30°∵∠AOB=∠OBC+∠ACB∴∠AOB=60°∵OA=OB∴△AOB是等边三角形∴AB=OA=1故选:B【点睛】本题考查了矩形的性质,等边三角形的判定和性质,等腰三角形判定和性质,是基础题,比较简单.二、填空题(每小题3分,共24分)11、1【解析】
证明△ABQ≌△EBQ,根据全等三角形的性质得到BE=AB=5,AQ=QE,同理可求CD=AC=7,AP=PD,根据三角形中位线定理计算即可.【详解】解:在△ABQ和△EBQ中,,∴△ABQ≌△EBQ(ASA),∴BE=AB=5,AQ=QE,同理可求CD=AC=7,AP=PD,∴DE=CD-CE=CD-(BC-BE)=2,∵AP=PD,AQ=QE,∴PQ=DE=1,故答案为:1.【点睛】本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.12、k<3【解析】
试题解析:∵一次函数中y随x的增大而减小,∴解得,故答案是:k【详解】请在此输入详解!13、1:1【解析】
如图,连接AC、PE、QF.设平行四边形ABCD的面积为8S,证明四边形EFQP是平行四边形,求出S平行四边形EFQP=1S和S△TPQ=2S即可解决问题.【详解】解:如图,连接AC、PE、QF.设平行四边形ABCD的面积为8S.∵DE=AE,DF=FC,∴EF∥AC,EF:AC=1:2,∴S△DEF=S△DAC=×1S=S,同理可证PQ∥AC,PQ:AC=1:2,S△CFQ=S△PQB=S△APE=S,∴四边形EFQP是平行四边形,∴S平行四边形EFQP=1S,∴S△TPQ=S平行四边形EFQP=2S,∴S△TPQ:S平行四边形ABCD=2S:8S=1:1,故答案为1:1.【点睛】本题考查的是平行四边形的综合运用,熟练掌握平行四边形的性质和相似三角形的性质是解题的关键.14、1:1【解析】以点A为原点,建立平面直角坐标系,则点B(3,1),C(3,0),D(2,1),如下图所示:设直线AB的解析式为yAB=kx,直线CD的解析式为yCD=ax+b,∵点B在直线AB上,点C、D在直线CD上,∴1=3k,解得:k=,,∴yAB=x,yCD=-x+3,∴点P的坐标为(,),∴S△PBD:S△PAC=.故答案是:1:1.15、13【解析】
根据题意连接,取的中点,连接,,利用三角形中位线定理得到,,再根据勾股定理即可解答.【详解】连接,取的中点,连接,,∵、分别是、的中点,∴OM=BE,ON=AD,∴,,∵、分别是、的中点,的中点,∴OM∥EB,ON∥AD,且,∴∠MON=90°,由勾股定理,.故答案为:13.【点睛】此题考查三角形中位线定理,勾股定理,解题关键在于作辅助线.16、(-2,-2)【解析】
先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标.【详解】“卒”的坐标为(﹣2,﹣2),故答案是:(﹣2,﹣2).【点睛】考查了坐标确定位置,关键是正确确定原点位置.17、1或2或4【解析】
如图1:当∠C=10°时,∠ABC=30°,与∠ABP=30°矛盾;如图2:当∠C=10°时,∠ABC=30°,∵∠ABP=30°,∴∠CBP=10°,∴△PBC是等边三角形,∴CP=BC=1;如图3:当∠ABC=10°时,∠C=30°,∵∠ABP=30°,∴∠PBC=10°﹣30°=30°,∴PC=PB,∵BC=1,∴AB=3,∴PC=PB===2如图4:当∠ABC=10°时,∠C=30°,∵∠ABP=30°,∴∠PBC=10°+30°=90°,∴PC=BC÷cos30°=4.故答案为1或2或4.考点:解直角三角形18、1【解析】根据已知证明四边形ABED为平行四边形,利用平行四边形的对边相等得BE=AD,从而可求CE.解答:解:∵AD∥BC,DE∥AB,∴四边形ABED为平行四边形,BE=AD,∴CE=BC-BE=BC-AD=2-1=1.点评:本题考查了梯形常用的作辅助线的方法,平行四边形的判定与性质.三、解答题(共66分)19、(1)5000;甲;(2);(3)750米;(4)150米/分.【解析】
(1)根据x=0时,y=5000可知,他们在进行5000米的长跑训练,在0<<15的时间内,,所以甲跑的快;(2)分段求解析式,在0<<15的时间内,由点(0,5000),(15,2000)来求解析式;在15≤≤20的时间内,由点(15,2000),(20,0)来求解析式;(3)根据题意求得甲的速度为250米/分,然后计算甲距离终点的路程,再计算他们的距离;(4)在15<<20的时间段内,求得乙的速度,然后计算他们的速度差.【详解】(1)根据图象信息可知,他们在进行5000米的长跑训练,在0<x<15的时间段内,直线y甲的倾斜程度大于直线y乙的倾斜程度,所以甲的速度较快;(2)①在0<<15内,设y=kx+b,把(0,5000),(15,2000)代入解析式,解得k=-200,b=5000,所以y=-200x+5000;②在15≤≤20内,设,把(15,2000),(20,0)代入解析式,解得,,所以y=-400x+8000,所以乙距终点的路程(米)与跑步时间(分)之间的函数关系式为:;(3)甲的速度为5000÷20=250(米/分),250×15=3750米,距终点5000-3750=1250米,此时乙距终点2000米,所以他们的距离为2000-1250=750米;(4)在15<<20的时间段内,乙的速度为2000÷5=400米/分,甲的速度为250米/分,所以他们的速度差为400-250=150米/分.考点:函数图象;求一次函数解析式.20、;【解析】
根据分式的加法和除法可以化简题目中的式子,然后将的值代入化简后的式子即可解答本题.【详解】解:,,,,当时,原式.【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21、(1)a=84.5,b=81;(2)甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定.【解析】
(1)依据中位数和众数的定义进行计算即可;(2)依据平均数、中位数、方差以及众数的角度分析,即可得到哪个学生的水平较高.【详解】(1)甲组数据排序后,最中间的两个数据为:84和85,故中位数a(84+85)=84.5,乙组数据中出现次数最多的数据为81,故众数b=81;(2)甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定;或:乙,理由:在90≤x≤100的分数段中,乙的次数大于甲.(答案不唯一,理由须支撑推断结论).【点睛】本题考查了统计表,众数,中位数以及方差的综合运用,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.22、12.【解析】
利用正比例函数的定义,设y=k(x-2),然后把已知的一组对应值代入求出k即可得到y与x的关系式;再将x=5代入已求解析式,从而可求出y的值.【详解】设,把代入得,解得,∴,即,当时,.【点睛】本题考查考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;再将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式.23、【解析】分析:根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.详解:原式====当时,原式==.点睛:本题考查了分式的化简求值,解答本题的关键是明确分式化简求值的方法.24、(1)见解析;(2)A′(2,3)B′(1,0)C′(5,1);(3)5.5【解析】
(1)由x1+6-x1=6,y1+4-y1=4得平移规律;(2)根据(1)中的平移规律即可得到点A′,B′,C′的坐标;(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东理工学院《免疫与病原生物学实验Ⅲ》2023-2024学年第一学期期末试卷
- 广东科技学院《幼儿园环境设计与布置》2023-2024学年第一学期期末试卷
- 广东理工职业学院《辩证唯物主义与历史唯物主义下》2023-2024学年第一学期期末试卷
- 广东机电职业技术学院《生物药物分析与检测》2023-2024学年第一学期期末试卷
- 广东行政职业学院《自动控制原理B》2023-2024学年第一学期期末试卷
- 广东工贸职业技术学院《物业管理概论》2023-2024学年第一学期期末试卷
- 广东工程职业技术学院《画法几何与阴影透视二》2023-2024学年第一学期期末试卷
- 广东财贸职业学院《对外汉语教学方法与设计》2023-2024学年第一学期期末试卷
- 《脑梗死诊治》课件
- 《初中生物复习资料》课件
- 《业务员销售技巧》课件
- 《汽车涂装》2024-2025学年第一学期工学一体化课程教学进度计划表
- 水厂安全管理培训
- 江西省赣州市2023-2024学年高一上学期期末考试化学试题 附答案
- 消化道出血护理常规课件
- 2024年物流运输公司全年安全生产工作计划例文(4篇)
- 二零二四年度软件开发合同:净水器智能控制系统定制开发协议3篇
- 贵州省铜仁市2023-2024学年高二上学期期末质量监测试题 地理 含答案
- 糖尿病肌少症
- 2025年全国普通话考试题库
- 2024-2025学年二年级语文上册期末非纸笔试卷二(统编版)
评论
0/150
提交评论