2024年湖北省武汉市市新观察八年级数学第二学期期末达标检测试题含解析_第1页
2024年湖北省武汉市市新观察八年级数学第二学期期末达标检测试题含解析_第2页
2024年湖北省武汉市市新观察八年级数学第二学期期末达标检测试题含解析_第3页
2024年湖北省武汉市市新观察八年级数学第二学期期末达标检测试题含解析_第4页
2024年湖北省武汉市市新观察八年级数学第二学期期末达标检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年湖北省武汉市市新观察八年级数学第二学期期末达标检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.将正比例函数y=2x的图象向下平移2个单位长度,所得图象对应的函数解析式是()A.y=2x-1 B.y=2x+2C.y=2x-2 D.y=2x+12.如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是()A.80° B.120° C.100° D.90°3.下列关于一次函数的说法中,错误的是()A.函数图象与轴的交点是B.函数图象自左至右呈下降趋势,随的增大而减小C.当时,D.图象经过第一、二、三象限4.用公式解方程﹣3x2+5x﹣1=0,正确的是()A.x= B.x= C.x= D.x=5.平面直角坐标系中,将直线l向右平移1个单位长度得到的直线解析式是y=2x+2,则原来的直线解析式是()A.y=3x+2B.y=2x+4C.y=2x+1D.y=2x+36.如图,△DEF是由△ABC经过平移得到的,若∠C=80°,∠A=33°,则∠EDF=()A.33° B.80° C.57° D.67°7.在平面直角坐标系中,点关于原点对称的点的坐标是A. B. C. D.8.如图,在中,是上一点,,,垂足为,是的中点,若,则的长度为()A.36 B.18 C.9 D.59.如图,点A,B在反比例函数(x>0)的图象上,点C、D在反比例函数(k>0)的图象上,AC//BD//y轴,已知点A、B的横坐标分别为1、2,若△OAC与△ABD的面积之和为3,那么k的值是()A.5 B.4 C.3 D.210.在、、、、3中,最简二次根式的个数有()A.4 B.3 C.2 D.1二、填空题(每小题3分,共24分)11.已知▱ABCD的周长为40,如果AB:BC=2:3,那么AB=_____.12.已知一等腰三角形有两边长为,4,则这个三角形的周长为_______.13.双曲线,在第一象限的图象如图,过上的任意一点,作轴的平行线交于点,交轴于点,若,则的值为__________.14.如图,直线经过点和点,直线经过点,则不等式组的解集是______.15.为了让居民有更多休闲和娱乐的地方,江宁区政府又新建了几处广场,工人师傅在铺设地面时,准备选用同一种正多边形地砖进行铺设现有下面几种形状的正多边形地砖:正三角形、正方形、正五边形、正六边形,其中不能进行平面镶嵌的有______.16.菱形的两条对角线长分别为10cm和24cm,则该菱形的面积是_________;17.比较大小:_______2(填“>”或“<”).18.分解因式:x2﹣7x=_____.三、解答题(共66分)19.(10分)学校有一批复印任务,原来由甲复印社承接,按每100页40元计费.现乙复印社表示:若学校先按月付给一定数额的承包费,则可按每100页15元收费.两复印社每月收费情况如图所示.根据图象回答:(1)设两家复印社每月复印任务为张,分别求出甲复印社的每月复印收费y甲(元)与乙复印社的每月复印收费y乙(元)与复印任务(张)之见的函数关系式.(2)乙复印社的每月承包费是多少?(3)当每月复印多少页时,两复印社实际收费相同?(4)如果每月复印页数是1200页,那么应选择哪个复印社.20.(6分)如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,且AE=CF,顺次连接B、E、D,F.求证:四边形BEDF是平行四边形.21.(6分)先化简,再求值:(1-)÷,其中x=2+.22.(8分)如图1,在▱ABCD中,点O是对角线AC的中点,EF过点O与AD,BC分别相交于点E,F,GH过点O与AB,CD分别相交于点G,H,连接EG,FG,FH,EH.(1)求证:四边形EGFH是平行四边形;(2)如图2,若EF∥AB,GH∥BC,在不添加任何辅助线的情况下,请直接写出图2中与四边形AGHD面积相等的所有的平行四边形.(四边形AGHD除外)23.(8分)已知△ABC和△DEC都是等腰直角三角形,C为它们的公共直角顶点,D、E分别在BC、AC边上.(1)如图1,F是线段AD上的一点,连接CF,若AF=CF;①求证:点F是AD的中点;②判断BE与CF的数量关系和位置关系,并说明理由;(2)如图2,把△DEC绕点C顺时针旋转α角(0<α<90°),点F是AD的中点,其他条件不变,判断BE与CF的关系是否不变?若不变,请说明理由;若要变,请求出相应的正确结论.24.(8分)某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年的月均用水量(单位:吨),并将调查数据进行了如下整理:4.72.13.12.35.22.87.34.34.86.74.55.16.58.92.24.53.23.24.53.53.53.53.64.93.73.85.65.55.96.25.73.94.04.07.03.79.54.26.43.54.54.54.65.45.66.65.84.56.27.5(1)把上面的频数分布表和频数分布直方图补充完整;(2)从直方图中你能得到什么信息?(写出两条即可)(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?25.(10分)如图,证明定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.已知:点D、E分别是△ABC的边AB、AC的中点.求证:DE∥BC,DE=BC.26.(10分)如图,小亮从点处出发,前进5米后向右转,再前进5米后又向右转,这样走次后恰好回到出发点处.(1)小亮走出的这个边形的每个内角是多少度?这个边形的内角和是多少度?(2)小亮走出的这个边形的周长是多少米?

参考答案一、选择题(每小题3分,共30分)1、C【解析】

根据“上加下减”的原则求解即可.【详解】将正比例函数y=1x的图象向下平移1个单位长度,所得图象对应的函数解析式是y=1x-1.故选C.【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键.2、B【解析】【分析】根据圆内接四边形的性质求出∠A,再根据圆周角定理进行解答即可.【详解】∵四边形ABCD为⊙O的内接四边形,∴∠A=180°﹣∠BCD=180°-120°=60°,由圆周角定理得,∠BOD=2∠A=120°,故选B.【点睛】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.3、D【解析】

根据一次函数的图像与性质即可求解.【详解】A.函数图象与轴的交点是,正确;B.函数图象自左至右呈下降趋势,随的增大而减小,正确C.当时,解得,正确D.图象经过第一、二、四象限,故错误.故选D.【点睛】此题主要考查一次函数的图像与性质,解题的关键是熟知一次函数的性质.4、C【解析】

求出b2-4ac的值,再代入公式求出即可.【详解】解:-3x2+5x-1=0,

b2-4ac=52-4×(-3)×(-1)=13,

x=

故选C.【点睛】本题考查了解一元二次方程的应用,能正确利用公式解一元二次方程是解此题的关键.5、B【解析】在直线上取一点(-1,0),向左平移一个单位后坐标为(-2,0),设平移前的直线解析式为:y=2x+b,把(-2,0)带入,得b=4,所以y=2x+4,故选:B.点睛:此题考查了图形的平移与函数解析式之间的关系.在平面直角坐标系中,图形的平移与图形上点的平移相同.关键是要搞清楚平移前后的解析式有什么关系.6、A【解析】

根据平移的性质,得对应角∠EDF=∠A,即可得∠EDF的度数.【详解】解:在△ABC中,∠A=33°,

∴由平移中对应角相等,得∠EDF=∠A=33°.

故选:A.【点睛】此题主要考查了平移的性质,解题时,注意运用平移中的对应角相等.7、C【解析】

点A(x,y)关于原点的对称点是(-x,-y).【详解】在平面直角坐标系中,点关于原点对称的点的坐标是.故选:C【点睛】本题考核知识点:中心对称和点的坐标.解题关键点:熟记对称的规律.8、C【解析】

根据三角形的中位线定理,在三角形中准确应用,并且求证E为CD的中点,再求证EF为△BCD的中位线,从而求得结论.【详解】∵在△ACD中,∵AD=AC,AE⊥CD,∴E为CD的中点,又∵F是CB的中点,∴EF为△BCD的中位线,∴EF∥BD,EF=BD,∵BD=18,∴EF=9,故选:C.【点睛】本题考查了三角形中位线定理和等腰三角形的性质.三角形中位线的性质:三角形的中位线平行于第三边且等于第三边的一半.9、A【解析】

先分别表示出A、B、C、D的坐标,然后求出AC=k-1,BD=-,继而根据三角形的面积公式表示出S△AOC+S△ABD==3,解方程即可.【详解】∵点A,B在反比例函数(x>0)的图象上,点A、B的横坐标分别为1、2,∴A(1,1),B(2,),又∵点C、D在反比例函数(k>0)的图象上,AC//BD//y轴,∴C(1,),D(2,),∴AC=k-1,BD=-,∴S△AOC+S△ABD==3,∴k=5,故选A.【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,正确表示出△OAC与△ABD的面积是解题的关键.10、C【解析】

最简二次根式就是被开方数不含分母,并且不含有开方开的尽的因数或因式的二次根式,根据以上条件即可判断.【详解】、、不是最简二次根式.、3是最简二次根式.综上可得最简二次根式的个数有2个.故选C.【点睛】本题考查最简二次根式的定义,一定要掌握最简二次根式必须满足两个条件,被开方数不含分母且被开方数不含能开得尽方的因数或因式.二、填空题(每小题3分,共24分)11、1.【解析】

根据平行四边形的性质推出AB=CD,AD=BC,设AB=2a,BC=3a,代入得出方程2(2a+3a)=40,求出a的值即可.【详解】∵平行四边形ABCD的周长为40cm,AB:BC=2:3,可以设AB=2a,BC=3a,∴AB=CD,AD=BC,AB+BC+CD+AD=40,∴2(2a+3a)=40,解得:a=4,∴AB=2a=1,故答案为:1.【点睛】本题考查了平行四边形的性质和解一元一次方程等知识点的应用,关键是根据题意得出方程2(2a+3a)=40,用的数学思想是方程思想,题目比较典型,难度也适当.12、14或16.【解析】

求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为4和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】(1)若4为腰长,6为底边长,由于6−4<4<6+4,即符合三角形的两边之和大于第三边.所以这个三角形的周长为6+4+4=14.(2)若6为腰长,4为底边长,由于6−6<4<6+6,即符合三角形的两边之和大于第三边.所以这个三角形的周长为6+6+4=16.故等腰三角形的周长为:14或16.故答案为:14或16.【点睛】此题考查三角形三边关系,等腰三角形的性质,解题关键在于分情况讨论13、1【解析】

根据S△AOC-S△BOC=S△AOB,列出方程,求出k的值.【详解】由题意得:S△AOC-S△BOC=S△AOB,

=1,

解得,k=1,

故答案为:1.【点睛】此题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.根据面积关系得出方程是解题的关键.14、【解析】

解不等式2x<kx+b<0的解集,就是指函数图象在A,B之间的部分的自变量的取值范围.【详解】解:根据题意得到y=kx+b与y=2x交点为A(-1,-2),解不等式2x<kx+b<0的解集,就是指函数图象在A,B之间的部分,又B(-2,0),此时自变量x的取值范围,是-2<x<-1.即不等式2x<kx+b<0的解集为:-2<x<-1.故答案为:-2<x<-1.【点睛】本题主要考查一次函数与一元一次方程及一元一次不等式之间的内在联系.根据函数图象即可得到不等式的解集.15、正五边形【解析】

本题考查一种正多边形的镶嵌应符合一个内角度数能整除.【详解】解:正三角形的每个内角是,能整除,能密铺;正方形的每个内角是,4个能密铺;正五边形每个内角是,不能整除,不能密铺;正六边形的每个内角是,能整除,能密铺.故答案为:正五边形.【点睛】本题意在考查学生对平面镶嵌知识的掌握情况,体现了学数学用数学的思想由平面镶嵌的知识可知只用一种正多边形能够铺满地面的是正三角形或正四边形或正六边形.16、110cm1.【解析】试题解析:S=×10×14=110cm1.考点:菱形的性质.17、<【解析】试题解析:故答案为:18、x(x﹣7)【解析】

直接提公因式x即可.【详解】解:原式=x(x﹣7),故答案为:x(x﹣7).【点睛】本题主要考查了因式分解的运用,准确进行计算是解题的关键.三、解答题(共66分)19、(1),;(2)200;(3)800页;(4)应选择乙复印社.【解析】

(1)根据甲乙复印社的收费方式,结合函数图象列出解析式即可;(2)由函数图象可直接得出答案;(3)当时,求出x即可;(4)将x=1200分别代入两函数解析式进行计算,然后作出判断.【详解】解:(1)∵由甲复印社承接,按每100页40元计费;先按月付给乙复印社一定数额的承包费,则按每100页15元收费,∴,;(2)由函数图象可得:乙复印社的每月承包费是200元;(3)当时,即,解得:,答:当每月复印800页时,两复印社实际收费相同;(4)当x=1200时,(元),(元),∵380<480,∴应选择乙复印社.【点睛】本题考查了一次函数的应用,比较简单,读懂题目信息并准确识图,理解两复印社的收费情况与复印页数的关系是解题的关键.20、见解析【解析】

首先连接BD,交AC于点O,由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OA=OC,OB=OD,又由AE=CF,可得OE=OF,然后根据对角线互相平分的四边形是平行四边形得出结论.【详解】解:证明:连接BD,交AC于点O,如图所示,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形DEBF是平行四边形.【点睛】本题考查了平行四边形的判定与性质,此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.21、;.【解析】

先根据分式的运算法则化简,再把x的值代入计算即可.【详解】(1-)÷=×=×=∴当x=2+时,原式==.【点睛】本题主要考查分式的计算,掌握分式的运算法则是解题的关键.22、(1)见解析;(2)▱GBCH、▱ABFE、▱EFCD、▱EGFH【解析】试题分析:根据ABCD为平行四边形得出AD∥BC,则∠EAO=∠FCO,根据OA=OC,∠AOE=∠COF得出△OAE和△OCF全等,从而得出OE=OF,同理得出OG=OH,从而说明平行四边形;根据平行四边形的性质得出面积相等的四边形试题解析:(1)证明:∵四边形ABCD为平行四边形∴AD∥BC∴∠EAO=∠FCO∵OA=OC∠AOE=∠COF∴△OAE≌△OCF∴OE=OF同理OG=OH∴四边形EGFH是平行四边形(2)□ABFE、□GBCH、□EFCD、□EGFH考点:平行四边形的性质和判定23、(1)①证明见解析;②BE=2CF,BE⊥CF;(2)仍然有BE=2CF,BE⊥CF.【解析】

(1)①如图1,由AF=CF得到∠1=∠2,则利用等角的余角相等可得∠3=∠ADC,然后根据等腰三角形的判定定理得FD=FC,易得AF=FD;

②先利用等腰直角三角形的性质得CA=CB,CD=CE,则可证明△ADC≌△BEC得到AD=BE,∠1=∠CBE,由于AD=2CF,∠1=∠2,则BE=2CF,再证明∠CBE+∠3=90°,于是可判断CF⊥BE;

(2)延长CF到G使FG=CF,连结AG、DG,如图2,易得四边形ACDG为平行四边形,则AG=CD,AG∥CD,于是根据平行线的性质得∠GAC=180°-∠ACD,所以CD=CE=AG,再根据旋转的性质得∠BCD=α,所以∠BCE=∠DCE+∠BCD=90°+α=90°+90°-∠ACD=180°-∠ACD,得到∠GAC=∠ECB,接着可证明△AGC≌△CEB,得到CG=BE,∠2=∠1,所以BE=2CF,和前面一样可证得CF⊥BE.【详解】(1)①证明:如图1,∵AF=CF,∴∠1=∠2,∵∠1+∠ADC=90°,∠2+∠3=90°,∴∠3=∠ADC,∴FD=FC,∴AF=FD,即点F是AD的中点;②BE=2CF,BE⊥CF.理由如下:∵△ABC和△DEC都是等腰直角三角形,∴CA=CB,CD=CE,在△ADC和△BEC中,∴△ADC≌△BEC,∴AD=BE,∠1=∠CBE,而AD=2CF,∠1=∠2,∴BE=2CF,而∠2+∠3=90°,∴∠CBE+∠3=90°,∴CF⊥BE;(2)仍然有BE=2CF,BE⊥CF.理由如下:延长CF到G使FG=CF,连结AG、DG,如图2,∵AF=DF,FG=FC,∴四边形ACDG为平行四边形,∴AG=CD,AG∥CD,∴∠GAC+∠ACD=180°,即∠GAC=180°﹣∠ACD,∴CD=CE=AG,∵△DEC绕点C顺时针旋转α角(0<α<90°),∴∠BCD=α,∴∠BCE=∠DCE+∠BCD=90°+α=90°+90°﹣∠ACD=180°﹣∠ACD,∴∠GAC=∠ECB,在△AGC和△CEB中,∴△AGC≌△CEB,∴CG=BE,∠2=∠1,∴BE=2CF,而∠2+∠BCF=90°,∴∠BCF+∠1=90°,∴CF⊥BE.故答案为(1)①证明见解析;②BE=2CF,BE⊥CF;(2)仍然有BE=2CF,BE⊥CF.【点睛】本题考查旋转的性质,全等三角形的判定与性质,等腰直角三角形和平行四边形的性质.24、(1)见解析;(2)答案不唯一;(3)我觉得家庭月均用水量应该定为5吨【解析】

(1)根据题中给出的50个数据,从中分别找出5.0<x≤6.5与

6.5<x≤8.0

的个数,进行划记,得到对应的频数,进而完成频数分布表和频数分布直方图;(2)从直方图可以看出:居民月平均用水量大部分在2.0至6.5之间;居民月平均用水量在3.5<x≤5.0范围内的最多,有19户;居民月均用水量在8.0<x≤9.5范围内的最少,只有2户等.(3)根据共有50个家庭,要使60%的家庭收费不受影响,即要使30户的家庭收费不受影响,而11+19=30,故家庭月均用水量应该定为5吨,即可得出答案.【详解】(1)(1)5.0<x≤6.5共有13个,则频数是13,6.5<x≤8.0共有

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论