四川省成都市西川中学2024年八年级下册数学期末调研模拟试题含解析_第1页
四川省成都市西川中学2024年八年级下册数学期末调研模拟试题含解析_第2页
四川省成都市西川中学2024年八年级下册数学期末调研模拟试题含解析_第3页
四川省成都市西川中学2024年八年级下册数学期末调研模拟试题含解析_第4页
四川省成都市西川中学2024年八年级下册数学期末调研模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省成都市西川中学2024年八年级下册数学期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.不等式组的解集是()A.x>4 B.x≤3 C.3≤x<4 D.无解2.如图,在正方形中,,是正方形的外角,是的角平分线上任意一点,则的面积等于()A.1 B. C.2 D.无法确定3.已知一组数据a、b、c的平均数为5,方差为4,那么数据a+2、b+2、c+2的平均数和方差分别为()A.7,6 B.7,4 C.5,4 D.以上都不对4.如图所示的3×3正方形网格中,∠1+∠2+∠3+∠4+∠5等于()A.135° B.180° C.225° D.270°5.某校5名同学在“国学经典颂读”比赛中,成绩(单位:分)分别是86,95,97,90,88,这组数据的中位数是()A.97 B.90 C.95 D.886.已知直线y=-x+4与y=x+2如图所示,则方程组的解为()A. B. C. D.7.下列说法正确的是()A.长度相等的两个向量叫做相等向量;B.只有方向相同的两个向量叫做平行向量;C.当两个向量不相等时,这两个有向线段的终点一定不相同;D.减去一个向量相当于加上这个向量的相反向量.8.下列命题中,是假命题的是()A.四个角都相等的四边形是矩形B.正方形的对角线所在的直线是它的对称轴C.对角线互相平分且平分每一组对角的四边形是菱形D.一组对边相等,另一组对边平行的四边形是平行四边形9.下列计算中,①;②;③;④不正确的有()A.3个 B.2个 C.1个 D.4个10.如图,正方形的两边,分别在平面直角坐标系的轴、轴的正半轴上正方形与正方形是以的中点为中心的位似图形,已知,,则正方形与正方形的相似比是()A. B. C. D.二、填空题(每小题3分,共24分)11.实数,在数轴上对应点的位置如图所示,化简的结果是__________.12.如图,中,,平分,点为的中点,连接,若的周长为24,则的长为______.13.化简=_____.14.如图,用9个全等的等边三角形,按图拼成一个几何图案,从该图案中可以找出_____个平行四边形.15.菱形两对角线长分别为24和10,则这个菱形的面积是________,菱形的高为_____.16.如图,菱形ABCD的边长是4cm,E是AB的中点,且DE⊥AB,则菱形ABCD的面积为__________.17.如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的面积S1与矩形QCNK的面积S2的大小关系是S1_____S2;(填“>”或“<”或“=”)18.如图,矩形中,,连接,以对角线为边按逆时针方向作矩形,使矩形矩形;再连接,以对角线为边,按逆时针方向作矩形,使矩形矩形,..按照此规律作下去,若矩形的面积记作,矩形的面积记作,矩形的面积记作,...则的值为__________.三、解答题(共66分)19.(10分)如图,在△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.求证:CD=EF.20.(6分)已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若AB=4,∠BCD=120°,求四边形AODE的面积.21.(6分)如图1,四边形ABCD中,AD//BC,∠ADC=90°,AD=8,BC=CD=6,点M从点D出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AD于点P,连接AC交NP于点Q,连接MQ,设运动时间为t秒.(1)连接AN、CP,当t为何值时,四边形ANCP为平行四边形;(2)求出点B到AC的距离;(3)如图2,将ΔAQM沿AD翻折,得ΔAKM,是否存在某时刻t,使四边形AQMK为菱形,若存在,求t的值;若不存在,请说明理由22.(8分)已知a=,求的值.23.(8分)在▱ABCD中,E、F是DB上的两点,且AE∥CF,若∠AEB=115∘,∠ADB=35∘24.(8分)某校为了选拔学生参加区里“五好小公民”演讲比赛,对八年级一班、二班提前选好的各10名学生进行预选(满分10分),绘制成如下两幅统计表:表(1):两班成绩序号1号2号3号4号5号6号7号8号9号10号一班(分)588981010855二班(分)1066910457108表(2):两班成绩分析表班级平均分中位数众数方差及格率一班7.6ab3.4430%二班c7.5104.4540%(1)在表(2)中填空,a=________,b=________,c=________.(2)一班、二班都说自己的成绩好,你赞同谁的说法?请给出两条理由.25.(10分)(1)求不等式组的整数解.(2)解方程组:26.(10分)如图,将四边形的四边中点依次连接起来,得四边形到是平行四边形吗?请说明理由.

参考答案一、选择题(每小题3分,共30分)1、C【解析】解不等式3x<2x+4得,x<4,解不等式x-1≥3,所以不等式组的解集为:3≤x<4,故选C.2、A【解析】

由于BD∥CF,以BD为底边,以BD边对应的高为边长计算三角形的面积即可.【详解】过C点作CG⊥BD于G,∵CF是∠DCE的平分线,∴∠FCE=45°,∵∠DBC=45°,∴CF∥BD,∴CG等于△PBD的高,∵BD=2,∴GC=BG==1,△PBD的面积等于.故答案为:1.【点睛】本题考查正方形的性质,角平分线的性质,解决本题的关键是证明△BPD以BD为底时高与GC相等.3、B【解析】

根据数据a,b,c的平均数为5可知a+b+c=5×3,据此可得出(-2+b-2+c-2)的值;再由方差为4可得出数据a-2,b-2,c-2的方差.【详解】解:∵数据a,b,c的平均数为5,∴a+b+c=5×3=15,∴(a-2+b-2+c-2)=3,∴数据a-2,b-2,c-2的平均数是3;∵数据a,b,c的方差为4,∴[(a-5)2+(b-5)2+(c-5)2]=4,∴a-2,b-2,c-2的方差=[(a-2-3)2+(b-2-3)2+(c--2-3)2]=[(a-5)2+(b-5)2+(c-5)2]=4,故选B.【点睛】本题考查了平均数、方差,熟练掌握平均数以及方差的计算公式是解题的关键.4、C【解析】

首先判定△ABC≌△AEF,△ABD≌△AEH,可得∠5=∠BCA,∠4=∠BDA,然后可得∠1+∠5=∠1+∠BCA=90°,∠2+∠4=90°,然后即可求出答案.【详解】在△ABC和△AEF中,∴△ABC≌△AEF(SAS)∴∠5=∠BCA∴∠1+∠5=∠1+∠BCA=90°在△ABD和△AEF中∴△ABD≌△AEH(SAS)∴∠4=∠BDA∴∠2+∠4=∠2+∠BDA=90°∵∠3=45°∴∠1+∠2+∠3+∠4+∠5=90°+90°+45°=225°故答案选C.【点睛】本题考查的是全等三角形的判定与性质,能够根据全等将所求角转化是解题的关键.5、B【解析】

先将题中的数据按照从小到大的顺序排列,然后根据中位数的概念求解即可.【详解】解:将小明所在小组的5个同学的成绩重新排列为:86、88、90、95、97,所以这组数据的中位数为90分,故选:B.【点睛】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6、B【解析】二元一次方程组的解就是组成二元一次方程组的两个方程的公共解,即两条直线y=-x+4与y=x+2的交点坐标.故选B点睛:本题考查了一次函数与二元一次方程组.二元一次方程组的解就是组成该方程组的两条直线的图象的交点.7、D【解析】【分析】相等向量:长度相等且方向相同的两个向量叫做相等向量;平行向量(也叫共线向量):方向相同或相反的非零向量;平行向量包含相等向量的情况.即相等向量一定是平行向量,但是平行向量不一定是相等向量;长度相等且方向相反的两个向量.根据相关定义进行判断.【详解】长度相等且方向相同的两个向量叫做相等向量,故选项A错误;方向相同或相反的非零向量叫做平行向量,故选项B错误;当两个向量不相等时,这两个有向线段的终点可能相同,故选项C错误;减去一个向量相当于加上这个向量的相反向量,故选项D正确.故选:D【点睛】本题考核知识点:向量.解题关键点:理解向量的相关定义.8、D【解析】

根据矩形的判定,正方形的性质,菱形和平行四边形的判定对各选项分析判断后利用排除法求解.【详解】解:A、四个角都相等的四边形是矩形,是真命题;B、正方形的对角线所在的直线是它的对称轴,是真命题;C、对角线互相平分且平分每一组对角的四边形是菱形,是真命题;D、一组对边相等且平行的四边形是平行四边形,是假命题;故选D.【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9、A【解析】

直接利用积的乘方运算法则、单项式乘以单项式的法则、同底数幂的除法法则分别计算得出答案即可.【详解】解:①,故此选项错误,符合题意;②,故此选项错误,符合题意;③,故此选项正确,不符合题意;④,故此选项错误,符合题意;故选:A【点睛】此题主要考查了积的乘方、单项式乘以单项式、同底数幂的除法等运算知识,正确掌握运算法则是解题关键.10、A【解析】

分别求出两正方形的对角线长度即可求解.【详解】由,得到C点(3,0)故AC=∵,正方形与正方形是以的中点为中心的位似图形,∴A’C’=AC-2AA’=∴正方形与正方形的相似比是A’C’:AC=1:3故选A.【点睛】此题主要考查多边形的相似比,解题的关键是熟知相似比的定义.二、填空题(每小题3分,共24分)11、【解析】由图可知:a<0,a﹣b<0,则原式=﹣a﹣(a﹣b)=﹣2a+b=.故答案为.12、18【解析】

利用等腰三角形三线合一的性质可得BD=CD,又因E为AC中点,根据三角形的中位线定理及直角三角形斜边中线的性质可得CE=AC=7.5,DE=AB=7.5,再由△CDE的周长为24,求得CD=9,即可求得BC的长.【详解】∵AB=AC,AD平分∠BAC,∴BD=CD,AD⊥BC,∵E为AC中点,∴CE=AC==7.5,DE=AB==7.5,∵CD+DE+CE=24,∴CD=24-7.5-7.5=9,∴BC=18,故答案为18.【点睛】本题考查了等腰三角形的性质、三角形的中位线定理及直角三角形斜边的性质,求得CE=AC=7.5,DE=AB=7.5是解决问题的关键.13、【解析】

,故答案为考点:分母有理化14、1【解析】

根据全等三角形的性质及平行四边形的判定,可找出现1个平行四边形.【详解】解:两个全等的等边三角形,以一边为对角线构成的四边形是平行四边形,这样的两个平行四边形又可组成较大的平行四边形,从该图案中可以找出1个平行四边形.故答案为1.【点睛】此题主要考查学生对平行四边形的判定的掌握情况和读图能力,注意找图过程中,要做到不重不漏.15、110cm1,cm.【解析】试题分析:已知两对角线长分别为14cm和10cm,利用勾股定理可得到菱形的边长=13cm,根据菱形面积==两条对角线的乘积的一半可得菱形面积=×14×10=110cm1.又因菱形面积=底×高,即高=菱形面积÷底=cm.考点:菱形的性质;勾股定理.16、8【解析】∵在菱形ABCD的边长为4,点E是AB边的中点,DE⊥AB,∴AE=AB=2,AD=4,∠AED=90°,∴DE=,∴S菱形ABCD=AB·DE=.故答案为:.17、=【解析】

利用矩形的性质可得△ABD的面积=△CDB的面积,△MBK的面积=△QKB的面积,△PKD的面积=△NDK的面积,进而求出答案.【详解】解:∵四边形ABCD是矩形,四边形MBQK是矩形,四边形PKND是矩形,∴△ABD的面积=△CDB的面积,△MBK的面积=△QKB的面积,△PKD的面积=△NDK的面积,∴△ABD的面积﹣△MBK的面积﹣△PKD的面积=△CDB的面积﹣△QKB的面积=△NDK的面积,∴S1=S1.故答案为:=.【点睛】本题考查了矩形的性质,熟练掌握矩形的性质定理是解题关键.18、【解析】

首先根据矩形的性质,求出AC,根据边长比求出面积比,依次类推,得出规律,即可得解.【详解】∵四边形ABCD是矩形,∴AD⊥DC,∴AC=,∵按逆时针方向作矩形ABCD的相似矩形AB1C1C,∴矩形AB1C1C的边长和矩形ABCD的边长的比为:2∴矩形AB1C1C的面积和矩形ABCD的面积的比5:4,∵矩形ABCD的面积=2×1=2,∴矩形AB1C1C的面积=,依此类推,矩形AB2C2C1的面积和矩形AB1C1C的面积的比5:4∴矩形AB2C2C1的面积=∴矩形AB3C3C2的面积=,按此规律第n个矩形的面积为:则故答案为:.【点睛】本题考查了矩形的性质,勾股定理,相似多边形的性质,解此题的关键是能根据求出的结果得出规律.三、解答题(共66分)19、根据直角三角形的性质可得,再根据中位线定理可得,问题得证.【解析】根据直角三角形斜边中中线等于斜边的一半可得,再根据中位线定理可得,从而可以得到20、(1)详见解析;(2)矩形AODE面积为【解析】

(1)根据菱形的性质得出AC⊥BD,再根据平行四边形的判定定理得四边形AODE为平行四边形,由矩形的判定定理得出四边形AODE是矩形;(2)证明△ABC是等边三角形,得出OA=×4=2,由勾股定理得出OB=2,由菱形的性质得出OD=OB=2,即可求出四边形AODE的面积.【详解】(1)证明:∵DE∥AC,AE∥BD,∴四边形AODE是平行四边形,∵在菱形ABCD中,AC⊥BD,∴平行四边形AODE是矩形,故四边形AODE是矩形;(2)解:∵∠BCD=120°,AB∥CD,∴∠ABC=180°-120°=60°,∵AB=BC,∴△ABC是等边三角形,∴OA=×4=2,∵在菱形ABCD中,AC⊥BD∴由勾股定理OB==2,∵四边形ABCD是菱形,∴OD=OB=2,∴四边形AODE的面积=OA•OD=2=4.【点睛】本题考查了矩形的判定以及菱形的性质,还考查了平行四边形的判定,掌握平行四边形的判定方法是解题的关键.21、(1)当t=2时,四边形ANCP为平行四边形;(2)点B到AC的距离185;(3)存在,t=1,使四边形AQMK为菱形【解析】

(1)先判断出四边形CNPD为矩形,然后根据四边形ANCP为平行四边形得CN=AP,即可求出t值;(2)设点B到AC的距离d,利用勾股定理先求出AC,然后根据ΔABC面积不变求出点B到AC的距离;(3)由NP⊥AD,QP=PK,可得当PM=PA时有四边形AQMK为菱形,列出方程6-t-2t=8-(6-t),求解即可.【详解】解:(1)根据题意可得,BN=t∵在四边形ABCD中,AD∥BC,∠ADC=90°,NP⊥AD于点P,∴四边形CNPD为矩形,∴CN=DP=BC-BN=6-t∴AP=AD-DP=8-(6-t)=2+t∵四边形ANCP为平行四边形,CN=AP,∴6-t=2+t解得:t=2,∴当t=2时,四边形ANCP为平行四边形;(2)设点B到AC的距离d,在RtΔACD中,AC=C在ΔABC中,11∴d=∴点B到AC的距离18(3)存在.理由如下:∵将ΔAQM沿AD翻折得ΔAKM∵NP⊥AD   ∴当PM=PA时有四边形AQMK为菱形,∴6-t-2t=8-(6-t),解得t=1,∴t=1,使四边形AQMK为菱形.【点睛】本题主要考查了四边形综合题,其中涉及到矩形的判定与性质,勾股定理,菱形的判定等知识,综合性较强,难度适中.运用数形结合、方程思想是解题的关键.22、1.【解析】

先将a的值分母有理化,从而判断出a﹣2<0,再根据二次根式的混合运算顺序和运算法则化简原式,继而将a的值代入计算可得.【详解】解:∵a===2﹣,∴a﹣2=2﹣﹣2=﹣<0,则原式==a+3+=2﹣+3+2+=1.【点睛】本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.23、80°【解析】

可证明△BCF≌△DAE,则∠BCF=∠DAE,根据三角形外角的性质可得出∠DAE的度数,从而得出∠BCF的度数.【详解】解:∵四边形ABCD是平行四边形,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论