版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省抚顺本溪铁岭辽阳葫芦岛市2024年八年级下册数学期末统考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.下列成语所描述的事件为随机事件的是()A.守株待兔 B.水中捞月 C.瓮中捉鳖 D.拔苗助长2.若一次函数的图象经过第二、三、四象限,则a的取值范围是()A.a≠3 B.a>0 C.a<3 D.0<a<33.y=(m﹣1)x|m|+3m表示一次函数,则m等于()A.1 B.﹣1 C.0或﹣1 D.1或﹣14.如图,点是线段的中点,分别以为边作等腰和等腰,,连接,且相交于点,交于点,则下列说法中,不正确的是()A.是的中线 B.四边形是平行四边形C. D.平分5.若关于x的分式方程的解为x=2,则m的值为().A.2 B.0 C.6 D.46.如图,矩形ABCD中,AC与BD交于点O,若,,则对角线AC的长为()A.5 B.7.5 C.10 D.157.解分式方程,去分母后正确的是()A. B.C. D.8.若反比例函数图象上有两个点,设,则不经过第()象限.A.一 B.二 C.三 D.四9.已知一元二次方程(a≠0)的两根分别为-3,1,则方程(a≠0)的两根分别为()A.1,5 B.-1,3 C.-3,1 D.-1,510.方程的根是()A. B. C. D.,二、填空题(每小题3分,共24分)11.已知一次函数y=kx+b(k≠0)的图象过点(2,0),且与两坐标轴围成的三角形的面积为1,则这个一次函数的解析式是_____.12.如图,在中,,,,为的中点,则______.13.计算:=_______.14.在△MBN中,BM=6,BN=7,MN=10,点A、C、D分别是MB、NB、MN的中点,则四边形ABCD的周长是_______;15.如图,直线与直线交于点,则不等式的解集是__________.16.如图,在四边形ABCD中,点E、F分别是边AB、AD的中点,BC=15,CD=9,EF=6,∠AFE=50°,则∠ADC的度数为_____.17.一次函数y=kx+b(k、b是常数)当自变量x的取值为1≤x≤5时,对应的函数值的范围为﹣2≤y≤2,则此一次函数的解析式为_____.18.要用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”,首先应假设_____.三、解答题(共66分)19.(10分)如图,在▱ABCD中,点E、F在BD上,且BF=DE.(1)写出图中所有你认为全等的三角形;(2)延长AE交BC的延长线于G,延长CF交DA的延长线于H(请补全图形),证明四边形AGCH是平行四边形.20.(6分)如图,D是△ABC的边AB上一点,CE∥AB,DE交AC于点F,若FA=FC.(1)求证:四边形ADCE是平行四边形;(2)若AE⊥EC,EF=EC=1,求四边形ADCE的面积.21.(6分)计算(1)(2)22.(8分)如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,且AE=CF,顺次连接B、E、D,F.求证:四边形BEDF是平行四边形.23.(8分)如图,在平面直角坐标系中,OA=OB=8,OD=1,点C为线段AB的中点(1)直接写出点C的坐标;(2)求直线CD的解析式;(3)在平面内是否存在点F,使得以A、C、D、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.24.(8分)如图,直线l的解析式为y=-x+,与x轴,y轴分别交于A,B两点,双曲线与直线l交于E,F两点,点E的横坐标为1.(1)求k的值及F点的坐标;(2)连接OE,OF,求△EOF的面积;(3)若点P是EF下方双曲线上的动点(不与E,F重合),过点P作x轴,y轴的垂线,分别交直线l于点M,N,求的值.25.(10分)上合组织峰会期间,甲、乙两家商场都将平时以同样价格出售相同的商品进行让利酬宾,其中甲商场所有商品按7折出售,乙商场对一次购物中超过200元后的价格部分打6折.(1)以x(单位:元)表示商品原价,y(单位:元)表示付款金额,分别就两家商场的让利方式写出y与x之间的函数解析式;(2)上合组织峰会期问如何选择这两家商场去购物更省钱?26.(10分)如图,在□ABCD中,过点D作DE⊥AB于点E,点F在边CD上,CF=AE,连接AF,BF.(1)求证:四边形BFDE是矩形(2)若CF=6,BF=8,DF=10,求证:AF是∠DAB的平分线.
参考答案一、选择题(每小题3分,共30分)1、A【解析】
根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、是随机事件,故A符合题意;B、是不可能事件,故B不符合题意;C、是必然事件,故C不符合题意;D、是不可能事件,故D不符合题意;故选A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2、D【解析】
由一次函数图象经过第二、三、四象限,利用一次函数图象与系数的关系,即可得出关于a的一元一次不等式组,解之即可得出结论.【详解】解:∵一次函数的图象经过第二、三、四象限,
∴,
解得:0<a<1.
故选:D.【点睛】本题考查了一次函数图象与系数的关系,牢记“k<0,b<0⇔y=kx+b的图象在二、三、四象限”是解题的关键.3、B【解析】由一次函数的定义知,|m|=1且m-1≠0,所以m=-1,故选B.4、D【解析】
根据平行四边形、全等三角形的判定与性质以及等腰三角形三线合一的性质,逐一判定即可.【详解】∵点是线段的中点,∴BC=EC∵等腰和等腰,,∴AB=AC=CD=DE,∠ABC=∠ACB=∠DCE=∠DEC=45°∴∠ACD=90°,AD=BC=EC∴∠CAD=∠CDA=45°∴AD∥BE∴四边形是平行四边形,故B选项正确;在△ABE和△DEB中,∴△ABE≌△DEB(SAS)∴,故C选项正确;∴∠DBE=∠AEB∴FC⊥BE∵AD∥BE∴FC⊥AD∴是的中线,故A选项正确;∵AC≠CE∴不可能平分,故D选项错误;故选:D.【点睛】此题主要考查平行四边形、全等三角形的判定与性质以及等腰三角形的性质,熟练掌握,即可解题.5、C【解析】
根据分式方程的解为x=2,把x=2代入方程即可求出m的值.【详解】解:把x=2代入得,,解得m=6.故选C.点睛:本题考查了分式方程的解,熟练掌握方程解得定义是解答本题的关键.6、C【解析】分析:根据矩形对角线的性质可推出△ABO为等边三角形.已知AB=5,易求AC的长.详解:∵四边形ABCD是矩形,∴AC=BD.∵AO=AC,BO=BD,∴AO=BO.又∵∠AOB=60°,∴△AOB是等边三角形,∴AO=AB=5,∴AC=2AO=1.故选C.点睛:本题考查的是矩形的性质以及等边三角形的判定和性质,熟记矩形的各种性质是解题的关键.7、D【解析】
两个分母分别为x+1和x2-1,所以最简公分母是(x+1)(x-1),方程两边都乘最简公分母,可把分式方程转换为整式方程.【详解】方程两边都乘(x+1)(x−1),得x(x−1)−x−2=x2−1.故选D.【点睛】本题考查了解分式方程的步骤,正确找到最简公分母是解题的关键.8、C【解析】
利用反比例函数的性质判断出m的正负,再根据一次函数的性质即可判断.【详解】解:∵,∴a-1>0,∴图象在三象限,且y随x的增大而减小,∵图象上有两个点(x1,y1),(x2,y2),x1与y1同负,x2与y2同负,∴m=(x1-x2)(y1-y2)<0,∴y=mx-m的图象经过一,二、四象限,不经过三象限,故选:C.【点睛】本题考查反比例函数的性质,一次函数的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9、B【解析】
利用换元法令,可得到的值,即可算出的值,即方程(a≠0)的两根.【详解】记,则即的两根为3,1故1,3.故选B.【点睛】本题主要考查换元法和解一元二次方程.10、D【解析】
此题用因式分解法比较简单,提取公因式,可得方程因式分解的形式,即可求解.【详解】解:x2−x=0,x(x−1)=0,解得x1=0,x2=1.故选:D.【点睛】本题考查了一元二次方程的解法,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法,此题方程两边公因式较明显,所以本题运用的是因式分解法.二、填空题(每小题3分,共24分)11、或【解析】
先根据面积求出三角形在y轴上边的长度,再分正半轴和负半轴两种情况讨论求解.【详解】根据题意,一次函数y=kx+b(k≠0)的图象与y轴交点坐标为(0,b),则×2×|b|=1,解得|b|=1,∴b=±1,①当b=1时,与y轴交点为(0,1),∴2k+1=0,解得k=-,∴函数解析式为y=-x+1;②当b=-1时,与y轴的交点为(0,-1),∴2k-1=0,解得k=,∴函数解析式为y=-x-1,综上,这个一次函数的解析式是或,故答案为:或.【点睛】本题考查了待定系数法求一次函数解析式,先根据三角形面积求出与y轴的交点,再利用待定系数法求函数解析式,本题需要注意有两种情况.12、【解析】
根据勾股定理以及直角三角形斜边上的中线性质即可求出答案.【详解】∵∠ABC=90°,BC=4cm,AB=3cm,
∴由勾股定理可知:AC=5cm,
∵点D为AC的中点,
∴BD=AC=cm,
故答案为:【点睛】本题考查勾股定理,解题的关键是熟练运用勾股定理以及直角三角形斜边上的中线的性质,本题属于基础题型.13、2+1【解析】试题解析:=.故答案为.14、13【解析】∵点A,C,D分别是MB,NB,MN的中点,∴CD∥AB,AD∥BC,∴四边形ABCD为平行四边形,∴AB=CD,AD=BC.∵BM=6,BN=7,MN=10,点A,C分别是MB,NB的中点,∴AB=3,BC=3.5,∴四边形ABCD的周长=(AB+BC)×2=(3+3.5)×2=13.15、【解析】
不等式的解集为直线在直线上方部分所对的x的范围.【详解】解:由图象可得,当时,直线在直线上方,所以不等式的解集是.故答案为:【点睛】本题考查了一次函数与不等式的关系,合理利用图象信息是解题的关键.16、140°【解析】
如图,连接BD,∵点E、F分别是边AB、AD的中点,∴EF是△ABD的中位线,∴EF∥BD,BD=2EF=12,∴∠ADB=∠AFE=50°,∵BC=15,CD=9,BD=12,∴BC2=225,CD2=81,BD2=144,∴CD2+BD2=BC2,∴∠BDC=90°,∴∠ADC=∠ADB+∠BDC=50°+90°=140°.故答案为:140°.17、y=x﹣1或y=﹣x+1【解析】
分k>0及k<0两种情况考虑:当k>0时,y值随x的增大而增大,由x、y的取值范围可得出点的坐标,由点的坐标利用待定系数法即可求出一次函数解析式;当k<0时,y值随x的增大而减小,由x、y的取值范围可得出点的坐标,由点的坐标利用待定系数法即可求出一次函数解析式.综上即可得出结论.【详解】当k>0时,y值随x的增大而增大,∴,解得:,∴一次函数的解析式为y=x﹣1;当k<0时,y值随x的增大而减小,∴,解得:,∴一次函数的解析式为y=﹣x+1.综上所述:一次函数的解析式为y=x﹣1或y=﹣x+1.故答案为y=x﹣1或y=﹣x+1.【点睛】本题考查了待定系数法求一次函数解析式以及一次函数的性质,分k>0及k<0两种情况利用待定系数法求出函数解析式是解题的关键.18、每一个角都小于45°【解析】试题分析:反证法的第一步是假设命题的结论不成立,据此可以得到答案.若用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应假设每一个角都小于45°.考点:此题主要考查了反证法点评:解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.三、解答题(共66分)19、(1)△ABE≌△CDF;△AED≌△CFB;△ABD≌△CDB;(2)详见解析【解析】
(1)因为ABCD是平行四边形,AD∥BC,因此∠ADE=∠CBF,又知DE=BF,D=BC那么构成了三角形ADE和CBF全等的条件(SAS)因此△AED≌△CFB.同理可得出△ABE≌△CDF,△ABD≌△CDB.(2)要证明四边形AGCH是个平行四边形,已知的条件有AB∥CD,只要证得AG∥CH即可得出上述结论.那么就需要证明∠AEB=∠DFC,也就是证明△ABE≌△CDF,根据AB∥CD.∴∠ABD=∠CDB.这两个三角形中已知的条件就有AB=CD,BE=DF(BE=DF+EF=DE+EF=DF),又由上面得出的对应角相等,那么两三角形就全等了(SAS).【详解】(1)解:△ABE≌△CDF;△AED≌△CFB;△ABD≌△CDB;(2)证明:在△ADE和△CBF中,AD=CB,∠ADE=∠CBF,DE=BF,∴△ADE≌△CBF,∴∠AED=∠CFB.∵∠FEG=∠AED=∠CFB=∠EFH,∴AG‖HC,而且,AH‖GC,∴四边形AGCH是平行四边形【点睛】本题考查了全等三角形的判定,平行四边形的性质和判定等知识点,本题中公共全等三角形来得出线段和角相等是解题的关键.20、(1)见解析(2)【解析】分析:(1)首先利用ASA得出△DAF≌△ECF,进而利用全等三角形的性质得出CE=AD,即可得出四边形ACDE是平行四边形;(2)由AE⊥EC,四边形ADCE是平行四边形,可推出四边形ADCE是矩形,由F为AC的中点,求出AC,根据勾股定理即可求得AE,由矩形面积公式即可求得结论.详解:(1)∵CE∥AB,∴∠EDA=∠DEC.∵FA=FC∠DFA=∠CFE,∴△ADF≌△CEF(ASA),∴AF=CF,∴四边形ADCE是平行四边形;(2)∵AE⊥EC,综合(1)四边形ADCE是平行四边形,∴四边形ADCE是矩形,∴DE=2EF=2∠DCE=,∴DC=,四边形ADCE的面积=CE·DC=.点睛:此题主要考查了平行四边形的判定,全等三角形的判定与性质,矩形的判定,勾股定理,得出△DAF≌△ECF
是解题关键.21、.(1);(2)【解析】
(1)首先将二次根式化为最简二次根式,然后根据二次根式的乘除运算法则计算即可;(2)首先将二次根式化为最简二次根式,然后根据二次根式的乘除运算法则计算即可.【详解】解:(1)原式=;(2)原式=..【点睛】本题考查二次根式的乘除运算,解题的关键是熟练运用二次根式的性质和运算法则.22、见解析【解析】
首先连接BD,交AC于点O,由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OA=OC,OB=OD,又由AE=CF,可得OE=OF,然后根据对角线互相平分的四边形是平行四边形得出结论.【详解】解:证明:连接BD,交AC于点O,如图所示,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形DEBF是平行四边形.【点睛】本题考查了平行四边形的判定与性质,此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.23、(1)点C的坐标为(4,4);(2)直线CD的解析式是y=;(3)点F的坐标是(11,4),(5,-4)或(-3,4).【解析】
(1)由OA,OB的长度可得出点A,B的坐标,结合点C为线段AB的中点可得出点C的坐标;
(2)由OD的长度可得出点D的坐标,根据点C,D的坐标,利用待定系数法可求出直线CD的解析式;
(3)设点F的坐标为(m,n),分AC为对角线、AD为对角线及CD为对角线三种情况,利用平行四边形的对角线互相平分可得出关于m,n的二元一次方程组,解之即可得出点F的坐标.【详解】(1)∵OA=OB=8,点A在x轴正半轴,点B在y轴正半轴,∴点A的坐标为(8,0),点B的坐标为(0,8).又∵点C为线段AB的中点,∴点C的坐标为(4,4).(2)∵OD=1,点D在x轴的正半轴,∴点D的坐标为(1,0).设直线CD的解析式为y=kx+b(k≠0),将C(4,4),D(1,0)代入y=kx+b,得:,解得:,∴直线CD的解析式是y=.(3)存在点F,使以A、C、D、F为点的四边形为平行四边形,设点F的坐标为(m,n).分三种情况考虑,如图所示:①当AC为对角线时,∵A(8,0),C(4,4),D(1,0),∴,解得:,∴点F1的坐标为(11,4);②当AD为对角线时,∵A(8,0),C(4,4),D(1,0),∴,解得:,∴点F2的坐标为(5,-4);③当CD为对角线时,∵A(8,0),C(4,4),D(1,0),∴,解得:,∴点F3的坐标为(-3,4).综上所述,点F的坐标是(11,4),(5,-4)或(-3,4).【点睛】本题考查了中点坐标公式、待定系数法求一次函数解析式、平行四边形的性质以及解二元一次方程组,解题的关键是:(1)由点A,B的坐标,利用中点坐标公式求出点C的坐标;(2)根据点的坐标,利用待定系数法求出直线CD的解析式;(3)分AC为对角线、AD为对角线及CD为对角线三种情况,利用平行四边形的对角线互相平分找关于m,n的二元一次方程组.24、(1);(2);(3)【解析】
(1)求出点E纵坐标,把点E坐标代入反比例函数解析式中即可求出k的值,再联立方程组求出点F的坐标;(2)运用“割补法”,根据求解即可;【详解】(1)设点的坐标为(1,a),代入y=y=-x+得,a=2,∴,把代入得,∴联立方程组得,解得,∴(2)分别过点、做轴的垂线段、,如图,令y=0,则,解得x=7,令x=0,则y=∴,,又,,∵===(3)如图,设,则有则,,,∴,∴【点睛】本题主要考查反比例函数的综合题,解答本题的关键是熟练掌握反比例函数的性质以及运用“割补
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 平底鞋产品供应链分析
- 借助电视播放信息行业营销策略方案
- 农场出租行业市场调研分析报告
- 办公机器和设备的修理行业市场调研分析报告
- 专四英语语法句子成分分析
- 出租电子书阅读器行业经营分析报告
- 裁缝用人体模型细分市场深度研究报告
- 博物馆艺术品的复制行业营销策略方案
- 糖浆罐市场分析及投资价值研究报告
- 劳动争议调解与仲裁法律服务行业营销策略方案
- GB/T 41782.1-2022物联网系统互操作性第1部分:框架
- GB/T 6500-2008毛绒纤维回潮率试验方法烘箱法
- GB/T 6170-20001型六角螺母
- GB/T 31288-2014铁尾矿砂
- GB/T 3045-2017普通磨料碳化硅化学分析方法
- GB/T 18488.1-2001电动汽车用电机及其控制器技术条件
- KISSsoft塑料齿轮齿廓修形篇
- CRRT护理考核试题及答案
- 西方马克思主义哲(共74张PPT)
- 血液透析中心火灾应急预案
- (附答案)福建师范大学《运动解剖学》在线作业一(福师)
评论
0/150
提交评论