贵州省黔东南州名校2024届数学八年级下册期末质量跟踪监视试题含解析_第1页
贵州省黔东南州名校2024届数学八年级下册期末质量跟踪监视试题含解析_第2页
贵州省黔东南州名校2024届数学八年级下册期末质量跟踪监视试题含解析_第3页
贵州省黔东南州名校2024届数学八年级下册期末质量跟踪监视试题含解析_第4页
贵州省黔东南州名校2024届数学八年级下册期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省黔东南州名校2024届数学八年级下册期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.计算的值为()A.9 B.1 C.4 D.02.如果平行四边形一边长为12cm,那么两条对角线的长度可以是()A.8cm和16cm B.10cm和16cm C.8cm和14cm D.10cm和12cm3.对于函数y=-x+1,下列结论正确的是()A.它的图象不经过第四象限 B.y的值随x的增大而增大C.它的图象必经过点(0,1) D.当x>2时,y>04.如图,四边形是平行四边形,对角线、交于点,是的中点,以下说法错误的是()A. B. C. D.5.不等式2x﹣1<1的解集在数轴上表示正确的是()A. B.C. D.6.在今年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心.他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是().A.50元,30元 B.50元,40元C.50元,50元 D.55元,50元7.在平行四边形ABCD中,∠A=110°,∠B=70°,则∠C的度数是()A.70° B.90° C.110° D.130°8.函数y=mx+n与y=nx的大致图象是()A. B.C. D.9.函数的图象经过点,若,则,、0三者的大小关系是()A. B. C. D.10.顺次连结对角线相等的四边形各边中点所得的四边形必是()A.菱形 B.矩形 C.正方形 D.无法确定二、填空题(每小题3分,共24分)11.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC=8,则EF的长为______.12.如图,四边形ABCD为菱形,点A在y轴正半轴上,AB∥x轴,点B,C在反比例函数上,点D在反比例函数上,那么点D的坐标为________.13.如图,梯形中,,点分别是的中点.已知两底之差是6,两腰之和是12,则的周长是____.14.如图,在平行四边形中,已知,,,点在边上,若以为顶点的三角形是等腰三角形,则的长是_____.15.如图,a∥b,∠1=110°,∠3=50°,则∠2的度数是_____.16.为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表所示:尺码(厘米)2525.52626.527购买量(双)12322则这10双运动鞋尺码的众数和中位数分别为________________.17.如图,在平行四边形ABCD中,AD=5,AB=3,BE平分∠ABC,则DE=_____.18.“6l8购物节”前,天猫某品牌服装旗舰店采购了一大批服装,已知每套服装进价为240元,出售时标价为360元,为了避免滞销库存,商店准备打折销售,但要保持利润不低于20%,那么至多可打_________折三、解答题(共66分)19.(10分)八年级(1)班开展了为期一周的“孝敬父母,帮做家务”社会活动,并根据学生帮家长做家务的时间来评价学生在活动中的表现,把结果划分成A,B,C,D,E五个等级.老师通过家长调查了全班50名学生在这次活动中帮父母做家务的时间,制作成如下的频数分布表和扇形统计图.(1)求a,b的值;(2)根据频数分布表估计该班学生在这次社会活动中帮父母做家务的平均时间;(3)该班的小明同学这一周帮父母做家务2小时,他认为自己帮父母做家务的时间比班级里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计量说明理由.20.(6分)如图1,在平面直角坐标系中,直线y=﹣x+b与x轴、y轴相交于A、B两点,动点C(m,0)在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上,过点D作DE⊥x轴于点E.(1)求m和b的数量关系;(2)当m=1时,如图2,将△BCD沿x轴正方向平移得△B′C′D′,当直线B′C′经过点D时,求点B′的坐标及△BCD平移的距离;(3)在(2)的条件下,直线AB上是否存在一点P,以P、C、D为顶点的三角形是等腰直角三角形?若存在,写出满足条件的P点坐标;若不存在,请说明理由.21.(6分)先化简,再求值:,其中是满足不等式组的整数解.22.(8分)如图,菱形对角线交于点,,,与交于点.(1)试判断四边形的形状,并说明你的理由;(2)若,求的长.23.(8分)某校全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况,并统计绘制成了如图两幅不完整的条形统计图和扇形统计图,请根据所提供的信息,解答下列问题:(1)本次共抽查学生人,并将条形图补充完整:(2)捐款金额的众数是元,中位数是元;(3)若该校共有2000名学生参加捐款,根据样本平均数估计该校大约可捐款多少元?24.(8分)“端午节小长假”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)甲公司每小时的租费是元;(2)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数解析式;(3)请你帮助小明计算并分析选择哪个出游方案合算.25.(10分)如图,是矩形的边延长线上的一点,连接,交于,把沿向左平移,使点与点重合,吗?请说明理由.26.(10分)甲、乙两位运动员在相同条件下各射靶10次,毎次射靶的成绩情况如图.(1)请填写下表:(2)请你从平均数和方差相结合对甲、乙两名运动员6次射靶成绩进行分析:平均数方差中位数命中9环以上的次数(包括9环)甲71.21乙5.47.5(3)教练根据两人的成绩最后选择乙去参加比赛,你能不能说出教练让乙去比赛的理由?(至少说出两条理由)

参考答案一、选择题(每小题3分,共30分)1、B【解析】

原式第一项利用绝对值定义计算,第二项利用零指数幂法则计算,最后一项利用负整数指数幂法则计算即可得到结果.【详解】原式=4+1-4=1故选B【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.2、B【解析】

根据平行四边形对角线的性质、三角形三边关系定理逐项判断即可得.【详解】如图,设四边形ABCD是平行四边形,边长为,对角线AC、BD相交于点O则A、若,则,不满足三角形的三边关系定理,此项不符题意B、若,则,满足三角形的三边关系定理,此项符合题意C、若,则,不满足三角形的三边关系定理,此项不符题意D、若,则,不满足三角形的三边关系定理,此项不符题意故选:B.【点睛】本题考查了平行四边形的对角线性质、三角形的三边关系定理,掌握理解平行四边形的性质是解题关键.3、C【解析】

根据一次函数的图象及性质逐一进行判断即可.【详解】A,函数图象经过一、二、四象限,故该选项错误;B,y的值随x的增大而减小,故该选项错误;C,当时,,故该选项正确;D,当时,,故该选项错误;故选:C.【点睛】本题主要考查一次函数的图象及性质,掌握一次函数的图象及性质是解题的关键.4、D【解析】

由平行四边形的性质和三角形中位线定理得出选项A、B、C正确;由OE≠BE,得出∠BOE≠∠OBC,选项D错误;即可得出结论.【详解】解:∵四边形ABCD是平行四边形,

∴OA=OC,OB=OD,AB∥DC,AB=CD,

又∵点E是BC的中点,

∴OE是△BCD的中位线,

∴OE=DC,OE∥DC,,

∴∠BOE=∠ODC,

∴选项A、B、C正确;

∵OE≠BE,

∴∠BOE≠∠OBC,

∴选项D错误;

故选:D.【点睛】此题考查了平行四边形的性质:平行四边形的对角线互相平分.还考查了三角形中位线定理:三角形的中位线平行且等于三角形第三边的一半.5、C【解析】

不等式移项合并,把x系数化为1,求出解集,表示在数轴上即可.【详解】解:不等式移项合并得:2x<2,解得:x<1,表示在数轴上,如图所示:故选C.【点睛】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.6、C【解析】

1出现了3次,出现的次数最多,则众数是1;把这组数据从小到大排列为:20,25,30,1,1,1,55,最中间的数是1,则中位数是1.故选C.7、C【解析】

由平行四边形ABCD,根据平行四边形的性质得到∠A=∠C,即可求出答案.【详解】∵四边形ABCD是平行四边形,∴∠A=∠C,∵∠A=110°,∴∠C=110°.故选:C.【点睛】本题主要考查对平行四边形的性质的理解和掌握,题目比较典型.8、D【解析】

当m>0,n>0时,y=mx+n经过一、二、三象限,y=nx经过一、三象限;当m>0,n<0时,y=mx+n经过一、三、四象限,y=nx经过二、四象限;当m<0,n>0时,y=mx+n经过一、二、四象限,y=nx经过一、三象限;当m<0,n<0时,y=mx+n经过二、三、四象限,y=nx经过二、四象限.综上,A,B,C错误,D正确故选D.考点:一次函数的图象9、A【解析】

根据反比例函数图象上点的坐标特征得到x1•y1=x2•y2=-6,然后根据x1<x2<0即可得到y1与y2的大小关系.【详解】根据题意得x1•y1=x2•y2=6,则函数y=的图象位于第一、三象限,且在每一象限内y随x的增大而减小,∵x1<x2<0,∴y2<y1<0,故选A.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.10、A【解析】

作出图形,根据三角形的中位线平行于第三边并且等于第三边的一半可得EF=AC,GH=AC,HE=BD,FG=BD,再根据四边形的对角线相等可知AC=BD,从而得到EF=FG=GH=HE,再根据四条边都相等的四边形是菱形即可得解.【详解】解:如图,E、F、G、H分别是四边形ABCD的边AB、BC、CD、DA的中点,连接AC、BD,根据三角形的中位线定理得,EF=AC,GH=AC,HE=BD,FG=BD,∵四边形ABCD的对角线相等,∴AC=BD,所以,EF=FG=GH=HE,所以,四边形EFGH是菱形.故选:A.【点睛】本题考查菱形的判定和三角形的中位线定理,解题的关键是掌握菱形的判定和三角形的中位线定理.二、填空题(每小题3分,共24分)11、1【解析】

根据直角三角形斜边上的中线等于斜边的一半求出DF的长度,根据三角形的中位线平行于第三边并且等于第三边的一半求出DE的长,然后相减即可得到EF的长.【详解】∵DE为△ABC的中位线,∴DE=BC=×8=4,∵∠AFB=90°,D是AB的中点,∴DF=AB=×6=3,∴EF=DE-DF=1,故答案为:1.【点睛】本题考查了三角形的中位线定理,直角三角形斜边上的中线等于斜边的一半的性质,熟记定理与性质是解题的关键.12、【解析】分析:首先设出菱形边长为a,由AB=a,得出C、D的坐标,过点C作CE⊥AB,由勾股定理可得D点坐标.详解:设菱形边长为a,即AB=a,设C点坐标为(b,),∵BC∥x轴,∴D点纵坐标为:,∴D点横坐标为:,则x=-4b,∴D(-4b,),∵CD=a,∴4b+b=a,a=5b,过点C作CE⊥AB,则BE=a-AE=a-b=4b,BC=a=5b,由勾股定理:CE=3b,CE=,∴b²=1-=,b=,∴D.故答案为.点睛:本题考查了反比例函数图象上点的坐标特征,勾股定理等知识,解题的关键是设出菱形边长,利用反比例函数的性质表示出菱形各顶点的坐标,进而求解.13、1.【解析】

延长EF交BC于点H,可知EF,FH,FG、EG分别为△BDC、△ABC、△BDC和△ACD的中位线,由三角形中位线定理结合条件可求得EF+FG+EG,可求得答案.【详解】连接AE,并延长交CD于K,∵AB∥CD,∴∠BAE=∠DKE,∠ABD=∠EDK,∵点E、F、G分别是BD、AC、DC的中点.∴BE=DE,在△AEB和△KED中,,∴△AEB≌△KED(AAS),∴DK=AB,AE=EK,EF为△ACK的中位线,∴EF=CK=(DC-DK)=(DC-AB),∵EG为△BCD的中位线,∴EG=BC,又FG为△ACD的中位线,∴FG=AD,∴EG+GF=(AD+BC),∵两腰和是12,即AD+BC=12,两底差是6,即DC-AB=6,∴EG+GF=6,FE=3,∴△EFG的周长是6+3=1.故答案为:1.【点睛】此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.14、2或或【解析】

分AB=BP,AB=AP,BP=AP三种情况进行讨论,即可算出BP的长度有三个.【详解】解:根据以为顶点的三角形是等腰三角形,可分三种情况①若AB=BP∵AB=2∴BP=2②若AB=AP过A点作AE⊥BC交BC于E,∵AB=AP,AE⊥BC∴BE=EP在Rt△ABE中∵∴AE=BE根据勾股定理AE2+BE2=AB2即2BE2=4解得BE=∴BP=③若BP=AP,则过P点作PF⊥AB∵AP=BP,PF⊥AB∴BF=AB=1在Rt△BFP中∵∴PF=BF=1根据勾股定理BP2=BF2+PF2即BP2=1+1=2,解得BP=∵2,,都小于3故BP=2或BP=或BP=.【点睛】本题主要考查了等腰三角形的性质和判定以及勾股定理,能利用分类讨论思想分三类情况进行讨论是解决本题的关键.BC=3在本题中的作用是BP的长度不能超过3,超过3的答案就要排除.15、60【解析】

根据平行线的性质:两直线平行内错角相等,可得∠BOD=50°,再根据对顶角相等可求出∠2.【详解】解:如图所示:∵直线a∥b,∠3=50°,∴∠BOD=50°,又∵∠1=∠BOD+∠2,∠2=∠1-∠BOD=110°-50°=60°.故本题答案为:60.【点睛】平行线的性质及对顶角相等是本题的考点,熟练掌握平行线的性质是解题的关键.16、1,1.【解析】

本题考查统计的有关知识,众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【详解】数据1出现了3次最多,这组数据的众数是1,共10个数据,从小到大排列此数据处在第5、6位的数都为1,故中位数是1.故答案为:1,1.【点睛】本题属于基础题,考查了确定一组数据的中位数和众数的能力.要注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求;如果是偶数个则找中间两位数的平均数.17、1【解析】

根据平行四边形性质求出AD∥BC,由平行线的性质可得∠AEB=∠CBE,然后由角平分线的定义知∠ABE=∠AEB,所以∠ABE=∠AEB,即可得AB=AE,由此即可求出DE的长.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE.∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE=3,∴DE=AD-AE=5-3=1.故答案是:1.【点睛】本题考查了平行四边形性质、三角形的角平分线的定义,平行线的性质的应用,证得AB=AE是解题的关键.18、八.【解析】

设打了x折,用售价×折扣-进价得出利润,根据利润率不低于20%,列不等式求解.【详解】解:设打了x折,

由题意得360×0.1x-240≥240×20%,

解得:x≥1.

则要保持利润不低于20%,至多打1折.

故答案为:八.【点睛】本题考查一元一次不等式的应用,解题的关键是读懂题意,求出打折之后的利润,根据利润率不低于20%,列不等式求解.三、解答题(共66分)19、(1)a=20,b=15;(2)该班学生这一周帮助父母做家务时间的平均数约为1.68小时;(3)符合实际,理由见解析.【解析】

(1)读图可知:C等级的频率为40%,总人数为50人,可求出a,则b也可得到;(2)借助求出的ab的值,可估计出该班学生在这次社会活动中帮父母做家务的平均时间;(3)求得中位数后,根据中位数的意义分析.【详解】(1)a=50×40%=20,b=50-2-10-20-3=15;(2)由“中值法”可知,=1.68(小时),答:该班学生这一周帮助父母做家务时间的平均数约为1.68小时;(3)符合实际.设中位数为m,根据题意,m的取值范围是1.5≤m<2,因为小明帮父母做家务的时间大于中位数.所以他帮父母做家务的时间比班级中一半以上的同学多.【点睛】本题考查读频数分布直方图、扇形图的能力和利用统计图获取信息的能力,加权平均数的计算以及中位数的应用.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20、(1)b=3m;(2)个单位长度;(3)P(0,3)或(2,2)【解析】

(1)易证△BOC≌△CED,可得BO=CE=b,DE=OC=m,可得点D坐标,代入解析式可求m和b的数量关系;

(2)首先求出点D的坐标,再求出直线B′C′的解析式,求出点C′的坐标即可解决问题;

(3)分两种情况讨论,由等腰直角三角形的性质可求点P坐标.【详解】解:(1)直线y=﹣x+b中,x=0时,y=b,所以,B(0,b),又C(m,0),所以,OB=b,OC=m,在和中∴点(2)∵m=1,∴b=3,点C(1,0),点D(4,1)∴直线AB解析式为:设直线BC解析式为:y=ax+3,且过(1,0)∴0=a+3∴a=-3∴直线BC的解析式为y=-3x+3,设直线B′C′的解析式为y=-3x+c,把D(4,1)代入得到c=13,∴直线B′C′的解析式为y=-3x+13,当y=3时,当y=0时,∴△BCD平移的距离是个单位.

(3)当∠PCD=90°,PC=CD时,点P与点B重合,

∴点P(0,3)

如图,当∠CPD=90°,PC=PD时,

∵BC=CD,∠BCD=90°,∠CPD=90°

∴BP=PD

∴点P是BD的中点,且点B(0,3),点D(4,1)

∴点P(2,2)

综上所述,点P为(0,3)或(2,2)时,以P、C、D为顶点的三角形是等腰直角三角形.【点睛】本题考查一次函数综合题、等腰直角三角形的性质、全等三角形的判定和性质、待定系数法等知识,解题的关键是灵活运用待定系数法解决问题,学会用分类讨论的思想思考问题,学会用平移性质解决问题,属于中考压轴题.21、化简得:求值得:.【解析】

先解不等式组,求得不等式组的整数解,后利用分式混合运算化简分式,把使分式有意义的字母的值代入求值即可.【详解】解:因为,解得:<,因为为整数,所以.原式因为,所以取,所以:上式.【点睛】本题考查分式的化简求值,不等式组的解法,特别要注意求值时学生容易忽视分式有意义的条件.22、(1)四边形是矩形,理由见解析;(2).【解析】

(1)由菱形的性质可证明∠BOA=90°,然后再证明四边形AEBO为平行四边形,从而可证明四边形AEBO是矩形;(2)依据矩形的性质可得到OE=AB,然后依据菱形的性质可得到AB=CD,即可求出的长.【详解】解:(1)四边形是矩形理由如下:∵,,∴四边形是平行四边形又∵菱形对角线交于点,∴,即∴四边形是矩形(2)∵四边形是矩形,∴在菱形中,∴.【点睛】本题主要考查的是菱形的性质判定、矩形的性质和判定,求出四边形是矩形是解题的关键.23、(1)50,见解析;(2)10,12.5;(3)根据样本平均数估计该校大约可捐款26200元.【解析】

(1)由捐款15元的人数及其所占百分比可得总人数,再减去其它捐款数的人数求出捐款10元的人数,从而补全图形;(2)根据众数和中位数的概念求解可得;(3)先求出这50个人捐款的平均数,再乘以总人数即可得.【详解】(1)本次抽查的学生总人数为14÷28%=50(人)则捐款10元的人数为50﹣(9+14+7+4)=16(人)补全图形如下:(2)捐款的众数为10元,中位数为=12.5(元)故答案为:10、12.5;(3)=13.1(元)则根据样本平均数估计该校大约可捐款2000×13.1=26200(元).【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24、(1)15;(2)y2=30x(x≥0);(3)当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.【解析】

(1)根据函数图象中的信息解答即可;(2)根据函数图象中的信息,分别运用待定系数法,求得y1,y2关于x的函数表达式即可;(3)当y1=y2时,15x+80=30x,当y1>y2时,15x+80>30x,当y1<y2时,15x+80<30x,分求得x的取值范围即可得出方案.【详解】解:(1)由图象可得:甲公司每小时的租费是15元;故答案为:15;(2)设y1=k1x+80,把点(1,95)代入,可得95=k1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论