贵州省铜仁地区名校2024年数学八年级下册期末经典试题含解析_第1页
贵州省铜仁地区名校2024年数学八年级下册期末经典试题含解析_第2页
贵州省铜仁地区名校2024年数学八年级下册期末经典试题含解析_第3页
贵州省铜仁地区名校2024年数学八年级下册期末经典试题含解析_第4页
贵州省铜仁地区名校2024年数学八年级下册期末经典试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省铜仁地区名校2024年数学八年级下册期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.分式-x+y-x-y可变形为(A.-x+yx-y B.-x-yx+y C.x+y2.下列图形:平行四边形、矩形、菱形、等腰梯形、正方形中是轴对称图形的有()A.1个 B.2个 C.3个 D.4个3.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A. B.C. D.4.下列运算正确的是()A.=﹣2 B.(2)2=6 C. D.5.化简的结果是()A.-a B.-1 C.a D.16.在平行四边形ABCD中,若∠A+∠C=260°,则∠D的度数为(

)A.120° B.100° C.50° D.130°7.某校生物小组11人到校外采集标本,其中2人每人采集到6件,4人每人采集到3件,5人每人采集到4件,则这个小组平均每人采集标本()A.3件 B.4件 C.5件 D.6件8.如图是由三个边长分别为6、9、x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是()A.1或9 B.3或5 C.4或6 D.3或69.学校升旗仪式上,徐徐上升的国旗的高度与时间的关系可以用一幅图近似地刻画,这幅图是下图中的()A. B.C. D.10.数据60,70,40,30这四个数的平均数是()A.40 B.50 C.60 D.70二、填空题(每小题3分,共24分)11.如图,将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°的三角板的一条直角边重合,则∠1的度数为______.12.如图,在Rt△ABC中,∠B=90°,AB=,BC=3,D、E分别是AB、AC的中点,延长BC至点F,使CF=BC,连接DF、EF,则EF的长为____.13.我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定7名同学参加决赛,他们的决赛成绩各不相同,其中李华已经知道自己的成绩,但能否进前四名,他还必须清楚这7名同学成绩的______________(填”平均数”“众数”或“中位数”)14.若,则m=__15.甲、乙两人进行射击测试,每人射击10次.射击成绩的平均数相同,射击成绩的方差分别为S甲2=5,S乙2=3.5,则射击成绩比较稳定的是_____(填“甲”或“乙“).16.二次函数的最大值是____________.17.某商场品牌手机经过5、6月份连续两次降价,每部售价由5000元降到4050元,设平均每次降价的百分率为x,根据题意可列方程:_____.18.如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上,若四边形EGFH是菱形,则AE的长是_________________。三、解答题(共66分)19.(10分)感知:如图,在菱形ABCD中,,点E、F分别在边AB、AD上若,易知≌.探究:如图,在菱形ABCD中,,点E、F分别在BA、AD的延长线上若,与是否全等?如果全等,请证明;如果不全等,请说明理由.拓展:如图,在▱ABCD中,,点O是AD边的垂直平分线与BD的交点,点E、F分别在OA、AD的延长线上若,,,求的度数.20.(6分)关于的一元二次方程有两个不相等的实数根.(1)求的取值范围;(2)当取满足条件的最大整数时,求方程的根.21.(6分)下面的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又原路返回,顺路到文具店去买笔,然后散步回家.其中x表示时间,y表示张强离家的距离.根据图象回答:(1)体育场离张强家的多远?张强从家到体育场用了多长时间?(2)体育场离文具店多远?(3)张强在文具店逗留了多久?(4)计算张强从文具店回家的平均速度.22.(8分)甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过1元后,超出1元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x>1.(1)根据题题意,填写下表(单位:元)累计购物实际花费

130

290

x

在甲商场

127

在乙商场

126

(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过1元时,在哪家商场的实际花费少?23.(8分)某花圃用花盆培育某种花苗,经过试验发现,每盆花的盈利与每盆株数构成一定的关系.每盆植入3株时,平均每株盈利3元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.(1)若每盆增加x株,平均每盆盈利y元,写出y关于x的函数表达式;(2)要使每盆的盈利为10元,且每盆植入株数尽可能少,问每盆应植入多少株?24.(8分)如图,出租车是人们出行的一种便利交通工具,折线ABC是在我市乘出租车所付车费y(元)与行车里程x(km)之间的函数关系图象.(1)根据图象,当x≥3时y为x的一次函数,请写出函数关系式;(2)某人乘坐13km,应付多少钱?(3)若某人付车费42元,出租车行驶了多少千米?25.(10分)观察下列各式:,,,请利用你所发现的规律,(1)计算;(2)根据规律,请写出第n个等式(,且n为正整数).26.(10分)如果P是正方形ABCD内的一点,且满足∠APB+∠DPC=180°,那么称点P是正方形ABCD的“对补点”.(1)如图1,正方形ABCD的对角线AC,BD交于点M,求证:点M是正方形ABCD的对补点;(2)如图2,在平面直角坐标系中,正方形ABCD的顶点A(1,1),C(3,3).除对角线交点外,请再写出一个该正方形的对补点的坐标,并证明.

参考答案一、选择题(每小题3分,共30分)1、D【解析】

根据分式的基本性质进行判断.【详解】A.分子、分母同时除以−1,则原式=x-yx+yB.分子、分母同时除以−1,则原式=x-yx+yC.分子、分母同时除以−1,则原式=x-yx+yD.分子、分母同时除以−1,则原式=x-yx+y,故本选项正确故选:D.【点睛】此题考查分式的基本性质,解题关键在于掌握运算法则.2、D【解析】

根据轴对称图形的概念对各图形分析判断后即可得解.【详解】平行四边形不是轴对称图形,矩形是轴对称图形,菱形是轴对称图形,等腰梯形是轴对称图形,正方形是轴对称图形,所以,轴对称图形的是:矩形、菱形、等腰梯形、正方形共4个.故选D.【点睛】此题考查轴对称图形,解题关键在于掌握其定义.3、C【解析】分析:设实际工作时每天绿化的面积为x万平方米,根据工作时间=工作总量÷工作效率结合提前30天完成任务,即可得出关于x的分式方程.详解:设实际工作时每天绿化的面积为x万平方米,则原来每天绿化的面积为万平方米,依题意得:,即.故选C.点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.4、D【解析】

根据二次根式的性质以及二次根式加法,乘法及乘方运算法则计算即可.【详解】A:=2,故本选项错误;B:(2)2=12,故本选项错误;C:与不是同类二次根式,不能合并,故本选项错误;D:根据二次根式乘法运算的法则知本选项正确,故选D.【点睛】本题考查的是二次根式的性质及二次根式的相关运算法则,熟练掌握是解题的关键.5、C【解析】

先把分子进行因式分解,再进行约分,即可求出答案.【详解】解:原式=,故选C.【点睛】本题考查了约分,解题的关键是把分式的分子进行因式分解,是一道基础题,用到的知识点是提公因式法.6、C【解析】

根据平行四边形的对角相等、邻角互补的性质即可求解.【详解】∵四边形ABCD为平行四边形∴∠A=∠C,∠A+∠D=180°,∵∠A+∠C=260°,∴∠A=∠C=130°,∴∠D=180°-∠A=50°.故选C.【点睛】本题考查了平行四边形的性质,熟练运用平行四边形的性质是解决问题的关键.7、B【解析】分析:根据平均数的定义列式计算可得.详解:这个小组平均每人采集标本(件),故选B.点睛:本题考查的是平均数,解题的关键是熟练掌握平均数的定义.8、D【解析】以AB为对角线将图形补成长方形,由已知可得缺失的两部分面积相同,即3×6=x×(9-x),解得x=3或x=6,故选D.【点睛】本题考查了正方形的性质,图形的面积的计算,准确地区分和识别图形是解题的关键.9、A【解析】根据题意:徐徐上升的国旗的高度与时间的变化是稳定的,即为直线上升.故选A.10、B【解析】

用四个数的和除以4即可.【详解】(60+70+40+30)÷4=200÷4=50.故选B.【点睛】本题重点考查了算术平均数的计算,希望同学们要牢记公式,并能够灵活运用.数据x1、x2、……、xn的算术平均数:=(x1+x2+……+xn).二、填空题(每小题3分,共24分)11、75°【解析】

根据三角形内角和定理求出∠DMC,求出∠AMF,根据三角形外角性质得出∠1=∠A+∠AMF,代入求出即可.【详解】∵∠ACB=90°,

∴∠MCD=90°,

∵∠D=60°,

∴∠DMC=30°,

∴∠AMF=∠DMC=30°,

∵∠A=45°,

∴∠1=∠A+∠AMF=45°+30°=75°,

故选:C.【点睛】本题考查了三角形内角和定理,三角形的外角性质的应用,解此题的关键是求出∠AMF的度数.12、【解析】

连接DE、CD,先证明四边形DEFC为平行四边形,再求出CD的长,即为EF的长.【详解】连接DE、CD,∵D、E分别是AB、AC的中点,CF=BC∴DE=BC=CF,DE∥BF,∴四边形DEFC为平行四边形,∵BD=AB=,BC=3,AB⊥BF,∴EF=CD=【点睛】此题主要考查四边形的线段求解,解题的关键是根据题意作出辅助线,求证平行四边形,再进行求解.13、中位数【解析】

七名选手的成绩,如果知道中位数是多少,与自己的成绩相比较,就能知道自己是否能进入前四名,因为中位数是七个数据中的第四个数,【详解】解:因为七个数据从小到大排列后的第四个数是这七个数的中位数,知道中位数,然后与自己的成绩比较,就知道能否进入前四,即能否参加决赛.故答案为:中位数.【点睛】考查中位数、众数、平均数反映一组数据的特征,中位数反映之间位置的数,说明比它大的占一半,比它小的占一半;众数是出现次数最多的数,平均数反映一组数据的平均水平和集中趋势,理解意义是正确判断的前提.14、1【解析】

利用多项式乘以多项式计算(x-m)(x+2)可得x2+(2-m)x-2m,然后使x的一次项系数相等即可得到m的值.【详解】∵(x-m)(x+2)=x2+(2-m)x-2m,

∴2-m=-6,

m=1,

故答案是:1.【点睛】考查了多项式乘以多项式,关键是掌握多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.15、乙.【解析】

根据方差反应了数据的波动情况,即可完成作答。【详解】解:因为S甲2=5>S乙2=3.5,即乙比较稳定,故答案为:乙。【点睛】本题考查了方差在数据统计中的作用,即方差是反映数据波动大小的量。16、-5【解析】

根据二次函数的性质求解即可.【详解】∵的a=-2<0,∴当x=1时,有最大值-5.故答案为-5.【点睛】本题考查了二次函数的最值:二次函数y=ax2+bx+c,当a>0时,抛物线在对称轴左侧,y随x的增大而减少;在对称轴右侧,y随x的增大而增大,因为图象有最低点,所以函数有最小值,当x=-时,y=;(2)当a<0时,抛物线在对称轴左侧,y随x的增大而增大;在对称轴右侧,y随x的增大而减少,因为图象有最高点,所以函数有最大值,当x=-时,y=.17、5000(1﹣x)2=1【解析】

根据现在售价5000元月平均下降率现在价格1元,即可列出方程.【详解】解:设平均每次降价的百分率为x,根据题意可列方程:5000(1﹣x)2=1.故答案为:5000(1﹣x)2=1.【点睛】此题主要考查了由实际问题抽象出一元二次方程,关键是掌握增长率问题的计算公式:变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为.18、【解析】

首先连接EF交AC于O,由矩形ABCD中,四边形EGFH是菱形,易证得△CFO≌△AOE(AAS),即可得OA=OC,然后由勾股定理求得AC的长,继而求得OA的长,又由△AOE∽△ABC,利用相似三角形的对应边成比例,即可求得答案.【详解】连接EF交AC于O,∵四边形EGFH是菱形,∴EF⊥AC,OE=OF,∵四边形ABCD是矩形,∴∠B=∠D=90°,AB∥CD,∴∠ACD=∠CAB,在△CFO与△AOE中,,∴△CFO≌△AOE(AAS),∴AO=CO,∵AC=,∴AO=AC=5,∵∠CAB=∠CAB,∠AOE=∠B=90°,∴△AOE∽△ABC,∴,∴,∴AE=.故答案为:.【点睛】此题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质.注意准确作出辅助线是解此题的关键.三、解答题(共66分)19、探究:和全等,理由见解析;拓展:.【解析】

探究:△ADE和△DBF全等,利用菱形的性质首先证明三角形ABD为等边三角形,再利用全等三角形的判定方法即可证明△ADE≌△DBF;拓展:因为点O在AD的垂直平分线上,所以OA=OD,再通过证明△ADE≌△DBF,利用全等三角形的性质即可求出∠ADE的度数.【详解】探究:和全等.四边形ABCD是菱形,.,.为等边三角形

,≌;

拓展:点O在AD的垂直平分线上,

..,,≌

.【点睛】本题考核知识点:菱形性质,等边三角形性质,全等三角形判定和性质等.知识点多,但不难.解题关键点:熟记相关知识点.20、(1)且;(2),【解析】

(1)根据题意可得且,由此即可求得m的取值范围;(2)在(1)的条件下求得m的值,代入解方程即可.【详解】(1)关于的一元二次方程有两个不相等的实数根,且.解得且.的取值范围是且.(2)在且的范围内,最大整数为.此时,方程化为.解得,.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.21、(1)体育场离张强家2.5km,张强从家到体育场用了15min;(2)体育场离文具店1km;(3)张强在文具店逗留了20min;(4)张强从文具店回家的平均速度为km/min【解析】

(1)根据张强锻炼时时间增加,路程没有增加,表现在函数图象上就出现第一次与x轴平行的图象;(2)由图中可以看出,体育场离张强家2.5千米,文具店离张强家1.5千米,得出体育场离文具店距离即可;(3)张强在文具店逗留,第二次出现时间增加,路程没有增加,时间为:65-1.(4)根据观察函数图象的纵坐标,可得路程,根据观察函数图象的横坐标,可得回家的时间,根据路程与时间的关系,可得答案.【详解】解:(1)从图象上看,体育场离张强家2.5km,张强从家到体育场用了15min.(2)2.5-1.5=1(km),所以体育场离文具店1km.(3)65-1=20(min),所以张强在文具店逗留了20min.(4)1.5÷(100-65)=(km/min),张强从文具店回家的平均速度为km/min.【点睛】此题主要考查了函数图象,正确理解函数图象横纵坐标表示的意义是解答此题的关键,需注意理解时间增多,路程没有变化的函数图象是与x轴平行的一条线段.22、(1)表格见解析;(2)120;(3)当小红累计购物大于120时上没封顶,选择甲商场实际花费少;当小红累计购物超过1元而不到120元时,在乙商场实际花费少.【解析】

(1)根据已知得出:在甲商场:1+(290-1)×0.9=271,1+(290-1)×0.9x=0.9x+10;在乙商场:20+(290-20)×0.92=278,20+(290-20)×0.92x=0.92x+2.2.(2)根据题中已知条件,求出0.92x+2.2,0.9x+10相等,从而得出正确结论.(3)根据0.92x+2.2与0.9x+10相比较,从而得出正确结论.【详解】解:(1)填表如下:累计购物实际花费

130

290

x

在甲商场

127

271

0.9x+10

在乙商场

126

278

0.92x+2.2

(2)根据题意得:0.9x+10=0.92x+2.2,解得:x=120.答:当x=120时,小红在甲、乙两商场的实际花费相同.(3)由0.9x+10<0.92x+2.2解得:x>120,由0.9x+10>0.92x+2.2,解得:x<120,∴当小红累计购物大于120时上没封顶,选择甲商场实际花费少;当小红累计购物超过1元而不到120元时,在乙商场实际花费少.23、(1)y=﹣2.5x2+1.5x+9;(2)4株【解析】

(1)设每盆花苗增加x株,则每盆花苗有(x+3)株,平均单株盈利为(3﹣2.5x)元,根据“每盆盈利=每盆花苗株数×单株盈利”,列函数式即可;(2)由题(1)得“每盆花苗株数×单株盈利=1”,解一元二次方程,在两根中取较小正整数就为增加的株数,则每盆的株数可求.【详解】(1)解:由题意知:每盆花苗增加x株,则每盆花苗有(x+3)株,平均单株盈利为:(3﹣2.5x)元,则:y=(x+3)(3﹣2.5x)=﹣2.5x2+1.5x+9(2)解:由题意得:(x+3)(3﹣2.5x)=1.化简,整理得x2﹣3x+2=2.解这个方程,得x1=1,x2=2,则3+1=4,2+3=5,答:每盆应植4株.【点睛】本题考查一元二次方程的应用,解题关键在于读懂题意列出方程.24、(1)当x≥3时,y与x之间的函数关系式是y=x+;(2)乘车13km应付车费21元;(3)出租车行驶了28千米.【解析】试题分析:(1)由于x≥3时,直线过点(3,8)、(8,15),设解析式为设y=kx+b,利用待定系数法即可确定解析式;(2)把x=13代入解析式即可求得;(3)将y=42代入到(1)中所求的解析式,即可求出x.解:(1)当x≥3时,设解析式为设y=kx+b,∵一次函数的图象过B(3,7)、C(8,14),∴,解得,∴当x≥3时,y与x之间的函数关系式是y=x+;(2)当x=13时,y=×13+=21,答:乘车13km应付车费21元;(3)将y=42代入y=x+,得42=x+,解得x=28,即出租车行驶了28千米.25、(1);(2)【解析】

(1)根据已知数据变化规律进而将原式变形求出答案;(2)根据已知数据变化规律进而将原式变形求出答案.【详解】解:(1)原式===(2)观察下列等式:第n个等式是.【点睛】本题主要考查了数字变化规律,正确将原式变形是解题关键.26、(1)证明见解析;(2)对补点如:N(,).证明见解析【解析】试题分析:(1)根据正方形的对角线互

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论