![湖南省张家界市名校2024届八年级数学第二学期期末达标检测模拟试题含解析_第1页](http://file4.renrendoc.com/view12/M0B/30/2D/wKhkGWYWuUeAH5-2AAHnoxM8HQo445.jpg)
![湖南省张家界市名校2024届八年级数学第二学期期末达标检测模拟试题含解析_第2页](http://file4.renrendoc.com/view12/M0B/30/2D/wKhkGWYWuUeAH5-2AAHnoxM8HQo4452.jpg)
![湖南省张家界市名校2024届八年级数学第二学期期末达标检测模拟试题含解析_第3页](http://file4.renrendoc.com/view12/M0B/30/2D/wKhkGWYWuUeAH5-2AAHnoxM8HQo4453.jpg)
![湖南省张家界市名校2024届八年级数学第二学期期末达标检测模拟试题含解析_第4页](http://file4.renrendoc.com/view12/M0B/30/2D/wKhkGWYWuUeAH5-2AAHnoxM8HQo4454.jpg)
![湖南省张家界市名校2024届八年级数学第二学期期末达标检测模拟试题含解析_第5页](http://file4.renrendoc.com/view12/M0B/30/2D/wKhkGWYWuUeAH5-2AAHnoxM8HQo4455.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省张家界市名校2024届八年级数学第二学期期末达标检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.用一条直线m将如图1的直角铁皮分成面积相等的两部分.图2、图3分别是甲、乙两同学给出的作法,对于两人的作法判断正确的是()A.甲正确,乙不正确 B.甲不正确,乙正确C.甲、乙都正确 D.甲、乙都不正确2.下列计算正确的是()A. B.2 C.()2=2 D.=33.如图,过点A(4,5)分别作x轴、y轴的平行线,交直线y=﹣x+6于B、C两点,若函数y=(x>0)的图象△ABC的边有公共点,则k的取值范围是()A.5≤k≤20 B.8≤k≤20 C.5≤k≤8 D.9≤k≤204.等腰三角形的周长为20,设底边长为,腰长为,则关于的函数解析式为(为自变量)()A. B. C. D.5.下列式子中属于最简二次根式的是()A. B. C. D.6.平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5 B.6 C.7 D.87.下列调查最适合用查阅资料的方法收集数据的是()A.班级推选班长 B.本校学生的到时间C.2014世界杯中,谁的进球最多 D.本班同学最喜爱的明星8.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,则点C的纵坐标y与x的函数解析式是()A.y=x B.y=1﹣x C.y=x+1 D.y=x﹣19.如图,正方形ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B、D恰好都落在点G处,已知BE=1,则EF的长为(
)A. B. C. D.310.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件,则x应满足的方程为()A. B.C. D.二、填空题(每小题3分,共24分)11.使二次根式有意义的x的取值范围是_____.12.已知△ABC的周长为4,顺次连接△ABC三边的中点构成的新三角形的周长为__________.13.如图,在直角坐标系中,正方形、的顶点均在直线上,顶点在轴上,若点的坐标为,点的坐标为,那么点的坐标为____,点的坐标为__________.14.根据如图所示的程序,当输入x=3时,输出的结果y=________.15.点P(﹣3,4)到x轴和y轴的距离分别是_____.16.如图,菱形ABCD的周长为16,若,E是AB的中点,则点E的坐标为_____________.17.如图,在△ABC中,,AC=3,AB=5,AB的垂直平分线DE交AB于点D,交BC于点E,则CE的长等于________.18.如图,将八个边长为1的小正方形摆放在平面直角坐标系中,若过原点的直线将图形分成面积相等的两部分,则直线的函数关系式为______________.三、解答题(共66分)19.(10分)某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人:他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘新工人若干名(新工人人数少于10人)和抽调的熟练工合作,刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?20.(6分)某学校抽查了某班级某月5天的用电量,数据如下表(单位:度):度数
9
10
11
天数
3
1
1
(1)求这5天的用电量的平均数;(2)求这5天用电量的众数、中位数;(3)学校共有36个班级,若该月按22天计,试估计该校该月的总用电量.21.(6分)某校八年级两个班各选派10名学生参加“垃圾分类知识竞赛,各参赛选手的成绩如下:八(1)班:88,91,92,93,93,93,94,98,98,100;八(2)班:89,93,93,93,95,96,96,98,98,99通过整理,得到数据分析表如下班级最高分平均分中位数众数方差八(1)班100939312八(2)班99958.4(1)求表中,,的值;(2)依据数据分析表,有同学认为最高分在(1)班,(1)班的成绩比(2)班好.但也有同学认为(2)班的成绩更好.请你写出两条支持八(2)班成绩更好的理由.22.(8分)(1)解分式方程:(2)解不等式组,并把解集在数轴上表示出来.23.(8分)如图,在平面直角坐标系xOy中,一次函数y=﹣x的图象与反比例函数y=(x<0)的图象相交于点A(﹣4,m).(1)求反比例函数y=的解析式;(2)若点P在x轴上,AP=5,直接写出点P的坐标.24.(8分)已知:如图,在平面直角坐标系中,一次函数的图象分别与轴交于点A、B,点在轴上,若,求直线PB的函数解析式.25.(10分)某校八年级两个班,各选派10名学生参加学校举行的“建模”大赛预赛,各参赛选手的成绩如下:八(1)班:88,91,92,93,93,93,94,98,98,100;八(2)班:89,93,93,93,95,96,96,98,98,99.通过整理,得到数据分析表如下:班级最高分平均分中位数众数方差八(1)班100939312八(2)班99958.4(1)直接写出表中、、的值为:_____,_____,_____;(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好.”但也有人说(2)班的成绩要好.请给出两条支持八(2)班成绩好的理由;(3)学校从平均数、中位数、众数、方差中选取确定了一个成绩,等于或大于这个成绩的学生被评定为“优秀”等级,如果八(2)班有一半的学生能够达到“优秀”等级,你认为这个成绩应定为_____分.26.(10分)钓鱼岛是我国的神圣领土,中国人民维护国家领土完整的决心是坚定的,多年来,我国的海监、渔政等执法船定期开赴钓鱼岛巡视.某日,我海监船(A处)测得钓鱼岛(B处)距离为20海里,海监船继续向东航行,在C处测得钓鱼岛在北偏东45°的方向上,距离为10海里,求AC的距离.(结果保留根号)
参考答案一、选择题(每小题3分,共30分)1、C【解析】
根据图形中所画出的虚线,可以利用图形中的长方形、梯形的面积比较得出直线两旁的面积的大小关系.【详解】如图:图形2中,直线m经过了大长方形和小长方形的对角线的交点,所以两旁的图形的面积都是大长方形和小长方形面积的一半,所以这条直线把这个图形分成了面积相等的两部分,即甲做法正确;图形3中,经过大正方形和图形外不添补的长方形的对角线的交点,直线两旁的面积都是大正方形面积的一半-添补的长方形面积的一半,所以这条直线把这个图形分成了面积相等的两部分,即乙做法正确.故选C.【点睛】此题主要考查了中心对称,根据图形中的割补情况,抓住经过对角线的交点的直线都能把长方形分成面积相等的两部分这一特点,即可解决问题.2、C【解析】
利用二次根式的加减运算及立方根的定义,逐一分析四个选项的正误即可得出结论.【详解】解:A、>3>,∴选项A不正确;B、,∴选项B不正确;C、()2=2,∴选项C正确;D、=3,∴选项D不正确.故选C.【点睛】本题考查了立方根、算式平方根以及二次根式的加减,利用排除法逐一分析四个选项的正误是解题的关键.3、A【解析】若反比例函数与三角形交于A(4,5),则k=20;若反比例函数与三角形交于C(4,2),则k=8;若反比例函数与三角形交于B(1,5),则k=5.故.故选A.4、C【解析】
根据等腰三角形的腰长=(周长-底边长)÷2,把相关数值代入即可.【详解】等腰三角形的腰长y=(20-x)÷2=-+1.故选C.【点睛】考查列一次函数关系式;得到三角形底腰长的等量关系是解决本题的关键.5、C【解析】
检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】解:A、被开方数含分母,故A错误;B、被开方数含能开得尽方的因数或因式,故B错误;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C正确;D、被开方数含分母,故D错误;故选:C.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.6、A【解析】试题分析:构造等腰三角形,①分别以A,B为圆心,以AB的长为半径作圆;②作AB的中垂线.如图,一共有5个C点,注意,与B重合及与AB共线的点要排除.故答案选A.考点:等腰三角形的判定;坐标与图形性质.7、C【解析】
了解收集数据的方法及渠道,得出最适合用查阅资料的方法收集数据的选项.【详解】A、B、D适合用调查的方法收集数据,不符合题意;C适合用查阅资料的方法收集数据,符合题意.故选C.【点睛】本题考查了调查收集数据的过程与方法.解题关键是掌握收集数据的几种方法:查资料、做实验和做调查.8、C【解析】
过点C作CE⊥y轴于点E,只要证明△CEA≌△AOB(AAS),即可解决问题;【详解】解:过点C作CE⊥y轴于点E.∵∠CEA=∠CAB=∠AOB=90°,∴∠EAC+∠OAB=90°,∠OAB+∠OBA=90°,∴∠EAC=∠ABO,∵AC=AB,∴△CEA≌△AOB(AAS),∴EA=OB=x,CE=OA=1,∵C的纵坐标为y,OE=OA+AD=1+x,∴y=x+1.故选:C.【点睛】本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9、B【解析】【分析】由图形折叠可得BE=EG,DF=FG;再由正方形ABCD的边长为3,BE=1,可得EG=1,EC=3-1=2,CF=3-FG;最后由勾股定理可以求得答案.【详解】由图形折叠可得BE=EG,DF=FG,∵正方形ABCD的边长为3,BE=1,∴EG=1,EC=3-1=2,CF=3-FG,在直角三角形ECF中,∵EF2=EC2+CF2,∴(1+GF)2=22+(3-GF)2,解得GF=,∴EF=1+=.故正确选项为B.【点睛】此题考核知识点是:正方形性质;轴对称性质;勾股定理.解题的关键在于:从图形折叠过程找出对应线段,利用勾股定理列出方程.10、D【解析】
本题的关键是要弄清因客户要求工作量提速后的工作效率和工作时间,然后根据题目给出的关键语“提前5天”找到等量关系,然后列出方程.【详解】因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:,根据“因客户要求提前5天交货”,用原有完成时间,减去提前完成时间,可以列出方程:故选:D.【点睛】这道题的等量关系比较明确,直接分析题目中的重点语句即可得知,再利用等量关系列出方程.二、填空题(每小题3分,共24分)11、【解析】试题分析:根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.考点:二次根式有意义的条件.12、2【解析】
抓住三角形的中位线定理进行分析解答,根据题意的分析可以知道三角形的中位线平行于第三边,并且等于它的一半.【详解】根据题意可知:三角形的中位线平行于第三边,并且等于它的一半,所以三条中位线组成的三角形的周长为42故答案为:2.【点睛】考查三角形的中位线定理,三角形的中位线平行于第三边而且等于第三边的一半.13、【解析】
先求出点、的坐标,代入求出解析式,根据=1,(3,2)依次求出点点、、、的纵坐标及横坐标,得到规律即可得到答案.【详解】∵(1,1),(3,2),∴正方形的边长是1,正方形的边长是2,∴(0,1),(1,2),将点、的坐标代入得,解得,∴直线解析式是y=x+1,∵=1,(3,2),∴的纵坐标是,横坐标是,∴的纵坐标是,横坐标是,∴的纵坐标是,横坐标是,∴的纵坐标是,横坐标是,由此得到的纵坐标是,横坐标是,故答案为:(7,8),(,).【点睛】此题考查一次函数的定义,函数图象,直角坐标系中点的坐标规律,能根据图象求出点的坐标并总结规律用于解题是关键.14、1【解析】
根据自变量与函数值的对应关系,可得相应的函数值.【详解】当x=3时,y=﹣3+5=1.故答案为:1.【点睛】本题考查了函数值,将自变量的值代入相应的函数关系式是解题的关键.15、4;1.【解析】
首先画出坐标系,确定P点位置,根据坐标系可得答案.【详解】点P(﹣1,4)到x轴的距离为4,到y轴的距离是1.故答案为:4;1.【点睛】本题考查了点的坐标,关键是正确确定P点位置.16、【解析】首先求出AB的长,进而得出EO的长,再利用锐角三角函数关系求出E点横纵坐标即可.解:如图所示,过E作EM⊥AC,已知四边形ABCD是菱形,且周长为16,∠BAD=60°,根据菱形的性质可得AB=CD-BC=AD=4,AC⊥DB,∠BAO=∠BAD=30°,又因E是AB的中点,根据直角三角形中,斜边的中线等于斜边的一半可得EO=EA=EB=AB=2,根据等腰三角形的性质可得∠BAO=∠EOA=30°,由直角三角形中,30°的锐角所对的直角边等于斜边的一半可得EM=OE=1,在Rt△OME中,由勾股定理可得OM=,所以点E的坐标为(,1),故选B.“点睛”此题主要考查了菱形的性质以及锐角三角函数关系应用,根据已知得出EO的长以及∠EOA=∠EAO=30°是解题的关键.17、【解析】
连接AE,由垂直平分线的性质可得AE=BE,利用勾股定理可得BC=4,设CE的长为x,则BE=4-x,在△ACE中利用勾股定理可得x的长,即得CE的长.【详解】解:连接AE,
∵DE为AB的垂直平分线,
∴AE=BE,
∵在△ABC中,∠ACB=90°,AC=3,AB=5,
由勾股定理得BC=4,
设CE的长为x,则BE=AE=4-x,在Rt△ACE中,
由勾股定理得:x2+32=(4-x)2,
解得:x=,
故答案为:.【点睛】本题主要考查了垂直平分线的性质和勾股定理,利用方程思想是解答此题的关键.18、【解析】
设直线l和八个正方形的最上面交点为A,过点A作AB⊥OC于点C,易知OB=3,利用三角形的面积公式和已知条件求出A的坐标,再利用待定系数法可求出该直线l的解析式.【详解】设直线l和八个正方形的最上面交点为A,过点A作AB⊥OC于点C∴OB=3∵经过原点的直线将图形分成面积相等的两部分∴直线上方面积分是4∴三角形ABO的面积是5∴∴∴直线经过点设直线l为则∴直线的函数关系式为【点睛】本题考查了一次函数,难点在于利用已知条件中的面积关系,熟练掌握一次函数相关知识点是解题关键.三、解答题(共66分)19、(1)每名熟练工每月可以安装4辆电动车,新工人每月分别安装2辆电动汽车.(2)①调熟练工1人,新工人8人;②调熟练工2人,新工人6人;③调熟练工3人,新工人4人;④调熟练工4人,新工人2人.【解析】
(1)设每名熟练工每月可以安装x辆电动车,新工人每月分别安装y辆电动汽车,根据安装8辆电动汽车和安装14辆电动汽车两个等量关系列出方程组,然后求解即可;
(2)设调熟练工m人,招聘新工人n名,根据一年的安装任务列出方程整理用m表示出n,然后根据人数m是整数讨论求解即可.【详解】(1)设每名熟练工每月可以安装x辆电动车,新工人每月分别安装y辆电动汽车,
根据题意得:,
解之得.
答:每名熟练工每月可以安装4辆电动车,新工人每月分别安装2辆电动汽车;
(2)设抽调熟练工m人,招聘新工人n名,由题意得:12(4m+2n)=240,
整理得,n=10-2m,
∵0<n<10,
∴当m=1,2,3,4时,n=8,6,4,2,
即:①调熟练工1人,新工人8人;②调熟练工2人,新工人6人;③调熟练工3人,新工人4人;④调熟练工4人,新工人2人.【点睛】本题考查了二元一次方程的应用,解二元一次方程组,(1)理清题目数量关系列出方程组是解题的关键,(2)用一个未知数表示出另一个未知数,是解题的关键,难点在于考虑人数是整数.20、(1)1.6度;(2)1度;1度;(3)2.2度.【解析】
(1)用加权平均数的计算方法计算平均用电量即可;(2)分别利用众数、中位数及极差的定义求解即可;(3)用班级数乘以日平均用电量乘以天数即可求得总用电量.【详解】(1)平均用电量为:(1×3+10×1+11×1)÷5=1.6度;(2)1度出现了3次,最多,故众数为1度;第3天的用电量是1度,故中位数为1度;(3)总用电量为22×1.6×36=2.2度.21、(1),,;(2)见解析;【解析】
(1)根据平均数的计算公式,求出八1班的平均分,得出的值,依据中位数的求法求得八2班的中位数,求得,看八2班成绩出现次数最多的,求得的值;(2)通过观察比较,发现从平均数、方差上对于八2班有利,可以从这两个方面,提出支持的理由.【详解】解:(1)八(1)班的平均数:,八(2)班成绩共10个数据,从小到大排列后,95、96处于之间,所以,是中位数,八(2)班成绩共10个数据,其中93出现三次,出现次数最多,众数是93,答:表中,,.(2)八2班的平均分高于八1班,因此八2班成绩较好;八2班的方差比八1班的小,因此八2班比八1班稳定.【点睛】考查平均数、中位数、众数、方差的意义及求法,理解并掌握各个统计量所反映一组数据的集中趋势或离散程度,则有利于对数据做出分析,做出判断.22、(1)无解;(2),见解析.【解析】
(1)方程去分母得:,移项、合并同类项、系数化为1,并检验可得;
(2)分别求出每个不等式的解集,再确定其公共部分即可得.【详解】解:(1)去分母得:,解得:,经检验是增根,分式方程无解;(2),解①得,解②得,∴,【点睛】本题主要考查解分式方程和不等式组的基本能力,严格遵循解方程或不等式的基本步骤是关键.23、(1)y=﹣;(2)P点的坐标是(﹣7,0)或(﹣1,0).【解析】
(1)先求出A的坐标,再代入反比例函数解析式求出即可;(2)根据勾股定理求出即可.【详解】(1)∵A(﹣4,m)在一次函数y=﹣x上,∴m=4,即A(﹣4,4),∵A在反比例函数y=(x<0)的图象上,∴k=﹣16,∴反比例函数y=的解析式是y=﹣;(2)∵Rt△ABP中,∠ABP=90°,AB=4,AP=5,∴BP==3,-4-3=-7,-4+3=-1,∴P点的坐标是(﹣7,0)或(﹣1,0).【点睛】本题考查了待定系数法求反比例函数解析式,勾股定理,熟练掌握相关内容是解题的关键.注意数形结合思想与分类讨论思想的运用.24、直线的函数解析式为或.【解析】
根据题意可得P点可在x轴左边或x轴右边,先求出A和B的坐标然后根据,可确定P的位置,进而运用待定系数法可求出直线PB的函数解析式.【详解】解:令,得∴A点坐标为(2,0)令,得∴B点坐标为(0,4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年磨光宝石砖项目可行性研究报告
- 冻品采购合同范例
- 养猪合伙合同范例
- 农机公司清算合同范本
- 农资机械合作合同范本
- 农田撒肥合同范本
- 代理土地过户合同范本
- 科研项目招标邀请函范文
- 义齿销售合同范例
- 农村土地买卖合同范本格式
- 经营开发部工作目标责任书
- 小班绘本教学《藏在哪里了》课件
- 沧州师范学院学士学位论文写作指南2020版
- 手机归属地表格
- 《职业教育》专业知识考试复习题库及答案
- 2023年北京市平谷区中考英语二模试卷
- 2023年新课标全国1卷英语高考真题试卷+答案
- 注塑成型参数条件表
- 中国古代快递的产生与发展
- 变压器更换施工方案
- 高二物理上期期末复习备考黄金30题 专题04 大题好拿分(提升20题)
评论
0/150
提交评论