2024届重庆市巴蜀常春藤学校数学八年级下册期末考试试题含解析_第1页
2024届重庆市巴蜀常春藤学校数学八年级下册期末考试试题含解析_第2页
2024届重庆市巴蜀常春藤学校数学八年级下册期末考试试题含解析_第3页
2024届重庆市巴蜀常春藤学校数学八年级下册期末考试试题含解析_第4页
2024届重庆市巴蜀常春藤学校数学八年级下册期末考试试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届重庆市巴蜀常春藤学校数学八年级下册期末考试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.下列函数的图象经过(0,1),且y随x的增大而减小的是()A.y=一x B.y=x-1 C.y=2x+1 D.y=一x+12.直角三角形两条直角边的长分别为3和4,则斜边长为()A.4 B.5 C.6 D.103.对于一次函数y=(k﹣3)x+2,y随x的增大而增大,k的取值范围是()A.k<0 B.k>0 C.k<3 D.k>34.下列图象能表示一次函数的是()A. B. C. D.5.如图,在平行四边形ABCD中,DE平分∠ADC交BC于E,AF⊥DE,垂足为F,已知∠DAF=50°,则∠B=()A.50° B.40° C.80° D.100°6.一元一次不等式组的解集为x>a,则a与b的关系为()A.a>b B.a<b C.a≥b D.a≤b7.如图,在边长为4的正方形ABCD中,点E、F分别是边BC、CD上的动点.且BE=CF,连接BF、DE,则BF+DE的最小值为()A. B. C. D.8.如图,在正方形中,点在上,,垂足分别为,,则的长为()A.1.5 B.2 C.2.5 D.39.已知锐角三角形的边长是2,3,x,那么第三边x的取值范围是()A.1<x< B. C. D.10.点P(2,5)经过某种图形变化后得到点Q(﹣2,5),这种图形变化可以是()A.关于x轴对称 B.关于y轴对称C.关于原点对称 D.上下平移二、填空题(每小题3分,共24分)11.如果,那么的值是___________.12.已知△ABC的周长为4,顺次连接△ABC三边的中点构成的新三角形的周长为__________.13.如图,在中,,,点D在边上,若以、为边,以为对角线,作,则对角线的最小值为_______.14.“若实数满足,则”,能够说明该命题是假命题的一组的值依次为_.15.当x=1时,分式的值是_____.16.若关于x的分式方程产生增根,则m=_____.17.已知某汽车油箱中的剩余油量(升)是该汽车行驶时间(小时)的一次函数,其关系如下表:(小时)…(升)…由此可知,汽车行驶了__________小时,油箱中的剩余油量为升.18.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AB=10,将△ABC沿CB方向向右平移得到△DEF.若四边形ABED的面积为20,则平移距离为___________.三、解答题(共66分)19.(10分)某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A,B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A30人/辆380元/辆B20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数设学校租用A型号客车x辆,租车总费用为y元.(Ⅰ)求y与x的函数解析式,请直接写出x的取值范围;(Ⅱ)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案总费用最省?最省的总费用是多少?20.(6分)如图,直线与轴相交于点,与轴相交于于点.(1)求,两点的坐标;(2)过点作直线与轴相交于点,且使,求的面积.21.(6分)如图1,以□ABCD的较短边CD为一边作菱形CDEF,使点F落在边AD上,连接BE,交AF于点G.(1)猜想BG与EG的数量关系.并说明理由;(2)延长DE,BA交于点H,其他条件不变,①如图2,若∠ADC=60°,求的值;②如图3,若∠ADC=α(0°<α<90°),直接写出的值.(用含α的三角函数表示)22.(8分)如图,在▱ABCD中,AB=6,AC=10,BD=16,求△COD的周长.23.(8分)如图,菱形ABCD中,AB=6cm,∠ADC=60°,点E从点D出发,以1cm/s的速度沿射线DA运动,同时点F从点A出发,以1cm/s的速度沿射线AB运动,连接CE、CF和EF,设运动时间为t(s).(1)当t=3s时,连接AC与EF交于点G,如图①所示,则AG=cm;(2)当E、F分别在线段AD和AB上时,如图②所示,求证△CEF是等边三角形;(3)当E、F分别运动到DA和AB的延长线上时,如图③所示,若CE=cm,求t的值和点F到BC的距离.24.(8分)计算:(+)×25.(10分)如图1,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC.(1)求C点的坐标;(2)如图1,在平面内是否存在一点H,使得以A、C、B、H为顶点的四边形为平行四边形?若存在,请直接写出H点坐标;若不存在,请说明理由;(3)如图1点M(1,﹣1)是第四象限内的一点,在y轴上是否存在一点F,使得|FM﹣FC|的值最大?若存在,请求出F点坐标;若不存在,请说明理由26.(10分)在西安市争创全国教育强市的宏伟目标指引下,高新一中初中新校区在今年如期建成.在校园建设过程中,规划将一块长18米,宽10米的矩形场地建设成绿化广场,如图,内部修建三条宽相等的小路,其中一条路与广场的长平行,另两条路与广场的宽平行,其余区域种植绿化,使绿化区域的面积为广场总面积的80%,求广场中间小路的宽.

参考答案一、选择题(每小题3分,共30分)1、D【解析】

设该函数解析式为(k≠1),由该函数的图象经过(1,1)可得出b=1,由y随x的增大而减小可得出k<1,再对照四个选项即可得出结论.【详解】解:设该函数解析式为(k≠1).

∵该函数的图象经过(1,1),

∴b=1;

∵y随x的增大而减小,

∴k<1.

故选D.【点睛】本题考查了一次函数图象上点的坐标特征以及一次函数的性质,利用一次函数图象上点的坐标特征及一次函数的性质,找出k<1及b=1是解题的关键.2、B【解析】

利用勾股定理即可求出斜边长.【详解】由勾股定理得:斜边长为:=1.故选B.【点睛】本题考查了勾股定理;熟练掌握勾股定理,理解勾股定理的内容是解题的关键.3、D【解析】

一次函数y=kx+b,当k>0时,y随x的增大而增大.据此列式解答即可.【详解】∵一次函数,随的增大而增大,∴k-3>0,解得:k>3,故选D.【点睛】本题考查了一次函数的性质.一次函数y=kx+b,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小,熟练掌握一次函数的性质是解题关键.4、D【解析】

将y=k(x-1)化为y=kx-k后分k>0和k<0两种情况分类讨论即可.【详解】y=k(x-1)=kx-k,

当k>0时,-k<0,此时图象呈上升趋势,且交与y轴负半轴,无符合选项;

当k<0时,-k>0,此时图象呈下降趋势,且交与y轴正半轴,D选项符合;

故选:D.【点睛】考查了一次函数的性质,解题的关键是能够分类讨论.5、C【解析】

由平行四边形的性质及角平分线的性质可得∠ADC的大小,进而可求解∠B的度数.【详解】解:在Rt△ADF中,∵∠DAF=50°,∴∠ADE=40°,又∵DE平分∠ADC,∴∠ADC=80°,∴∠B=∠ADC=80°.故选:C.【点睛】本题主要考查平行四边形的性质及角平分线的性质,应熟练掌握,并能做一些简单的计算问题.6、C【解析】【分析】根据不等式解集的确定方法,“大大取大”,可以直接得出答案.【详解】∵一元一次不等式组的解集是x>a,∴根据不等式解集的确定方法:大大取大,∴a≥b,故选C.【点睛】本题考查了不等式解集的确定方法,熟练掌握不等式组解集的确定方法“大大取大,小小取小,大小小大中间找,大大小小无处找”是解题的关键,也可以利用数形结合思想利用数轴来确定.7、C【解析】

连接AE,利用△ABE≌△BCF转化线段BF得到BF+DE=AE+DE,则通过作A点关于BC对称点H,连接DH交BC于E点,利用勾股定理求出DH长即可.【详解】解:连接AE,如图1,∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°.又BE=CF,∴△ABE≌△BCF(SAS).∴AE=BF.所以BF+DE最小值等于AE+DE最小值.作点A关于BC的对称点H点,如图2,连接BH,则A、B、H三点共线,连接DH,DH与BC的交点即为所求的E点.根据对称性可知AE=HE,所以AE+DE=DH.在Rt△ADH中,DH=∴BF+DE最小值为4.故选:C.【点睛】本题主要考查正方形的性质,轴对称的性质,全等三角形的判定及性质,勾股定理,能够作出辅助线将线段转化是解题的关键.8、D【解析】

作辅助线PB,求证,然后证明四边形是矩形,【详解】如图,连接.在正方形中,.∵,∴,∴.∵,∴四边形是矩形,∴.∴.故选D.【点睛】本题考查了全等三角形的判定定理(SAS)以及矩形对角线相等的性质,从而求出PD的长度9、B【解析】

由三角形三条边的关系得1<x<5,由于该三角形是锐角三角形,再结合勾股定理求出由锐角三角形变为直角三角形的临界值.【详解】首先要能组成三角形,由三角形三条边的关系得1<x<5;下面求该三角形为直角三角形的边长情况(此为临界情况):当3为斜边时,由勾股定理,22+x2=32,解得x=.当x为斜边时,由勾股定理,22+32=x2,解得x=,综上可知,当<x<时,原三角形为锐角三角形.故选B.【点睛】本题考查了三角形三条边的关系和勾股定理,解题的是由勾股定理求出x的临界值,再结合三角形三条边的关系求出x的取值范围.10、B【解析】

根据平面内两点关于y轴对称的点,横坐标互为相反数,纵坐标不变从而得出结论【详解】∵点P(2,5)经过某种图形变化后得到点Q(﹣2,5),∴这种图形变化可以是关于y轴对称.故选B.【点睛】此题主要考查平面内两点关于y轴对称的点坐标特征二、填空题(每小题3分,共24分)11、【解析】

由得到再代入所求的代数式进行计算.【详解】∵,∴,∴,故答案为:.【点睛】此题考查分式的求值计算,根据已知条件求出m与n的等量关系是解题的关键.12、2【解析】

抓住三角形的中位线定理进行分析解答,根据题意的分析可以知道三角形的中位线平行于第三边,并且等于它的一半.【详解】根据题意可知:三角形的中位线平行于第三边,并且等于它的一半,所以三条中位线组成的三角形的周长为42故答案为:2.【点睛】考查三角形的中位线定理,三角形的中位线平行于第三边而且等于第三边的一半.13、1【解析】

由平行四边形的对角线互相平分、垂线段最短知,当OD⊥BC时,DE线段取最小值,由三角形中位线定理求出OD,即可得出DE的最小值.【详解】解:∵,,根据勾股定理得,∵四边形是平行四边形,,∴当取最小值时,线段最短,即时最短,是的中位线,,,故答案为:1.【点睛】本题考查了平行四边形的性质,勾股定理以及垂线段最短,此题难度适中,注意掌握数形结合思想的应用.14、1,2,1【解析】

列举一组数满足a<b<c,不满足a+b<c即可.【详解】解:当a=1,b=2,c=1时,满足a<b<c,不满足a+b<c,所以说明该命题是假命题的一组a,b,c的值依次为1,2,1.故答案为1,2,1.【点睛】本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.15、【解析】

将代入分式,按照分式要求的运算顺序计算可得.【详解】当时,原式.故答案为:.【点睛】本题主要考查分式的值,在解答时应从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径.16、1【解析】

方程两边都乘以化为整式方程,表示出方程的解,依据增根为,即可求出的值.【详解】解:方程去分母得:,解得:,由方程有增根,得到,则的值为1.故答案为:1.【点睛】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.17、11.5【解析】

根据剩余油量(升)、汽车行驶时间(小时),可求出每千米用油量,根据题意可写出函数式.【详解】根据题意得每小时的用油量为,∴剩余油量(升)与汽车行驶时间(小时)的函数关系式:,当y=8时,x=11.5.故答案为:11.5.【点睛】此题考查一次函数,解题关键在于结合实际列出一次函数关系式求解即可.18、1【解析】

先根据含30度的直角三角形三边的关系得到AC,再根据平移的性质得AD=BE,ADBE,于是可判断四边形ABED为平行四边形,则根据平行四边形的面积公式得到BE的方程,则可计算出BE=1,即得平移距离.【详解】解:在Rt△ABC中,∵∠ABC=30°,∴AC=AB=5,∵△ABC沿CB向右平移得到△DEF,∴AD=BE,ADBE,∴四边形ABED为平行四边形,∵四边形ABED的面积等于20,∴AC•BE=20,即5BE=20,∴BE=1,即平移距离等于1.故答案为:1.【点睛】本题考查了含30°角的直角三角形的性质,平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.也考查了平行四边形的判定与性质.三、解答题(共66分)19、(1)21≤x≤62且x为整数;(2)共有25种租车方案,当租用A型号客车21辆,B型号客车41辆时,租金最少,为19460元.【解析】

(1)根据租车总费用=A、B两种车的费用之和,列出函数关系式,再根据AB两种车至少要能坐1441人即可得取x的取值范围;(2)由总费用不超过21940元可得关于x的不等式,解不等式后再利用函数的性质即可解决问题.【详解】(1)由题意得y=380x+280(62-x)=100x+17360,∵30x+20(62-x)≥1441,∴x≥20.1,∴21≤x≤62且x为整数;(2)由题意得100x+17360≤21940,解得x≤45.8,∴21≤x≤45且x为整数,∴共有25种租车方案,∵k=100>0,∴y随x的增大而增大,当x=21时,y有最小值,y最小=100×21+17360=19460,故共有25种租车方案,当租用A型号客车21辆,B型号客车41辆时,租金最少,为19460元.【点睛】本题考查了一次函数的应用、一元一次不等式的应用等,解题的关键是理解题意,正确列出函数关系式,会利用函数的性质解决最值问题.20、(1)点的坐标为,点的坐标为;(2)的面积为或.【解析】

(1)分别令x,y为0即可得出点,两点的坐标;(2)分点在轴的正半轴上时和点在轴的负半轴上时两种情况分别画图求解即可.【详解】解:(1)对于,当时,,解得,则点的坐标为当时,,则点的坐标为.(2)当点在轴的正半轴上时,如图①,∵,∴,∴的面积;当点在轴的负半轴上时,如图②,∵,∴.∴的面积,综上所述,的面积为或.21、(1),理由见解析;(2);(3).【解析】

(1)BG=EG,根据已知条件易证△BAG≌△EFG,根据全等三角形的对应边相等即可得结论;(2)①方法一:过点G作GM∥BH,交DH于点M,证明ΔGME∽ΔBHE,即可得,再证明是等边三角形,可得,由此可得;方法二:延长,交于点,证明ΔHBM为等边三角形,再证明∽,即可得结论;②如图3,连接EC交DF于O根据三角函数定义得cosα=,则OF=bcosα,DG=a+2bcosα,同理表示AH的长,代入计算即可.【详解】(1),理由如下:∵四边形是平行四边形,∴∥,.∵四边形是菱形,∴∥,.∴∥,.∴.又∵,∴≌.∴.(2)方法1:过点作∥,交于点,∴.∵,∴∽.∴.由(1)结论知.∴.∴.∵四边形为菱形,∴.∵四边形是平行四边形,∴∥.∴.∵∥,∴.∴,即.∴是等边三角形。∴.∴.方法2:延长,交于点,∵四边形为菱形,∴.∵四边形为平形四边形,∴,∥.∴.,即.∴为等边三角形.∴.∵∥,∴,.∴∽,∴.由(1)结论知∴.∴.∵,∴.(3).如图3,连接EC交DF于O,∵四边形CFED是菱形,∴EC⊥AD,FD=2FO,设FG=a,AB=b,则FG=a,EF=ED=CD=b,Rt△EFO中,cosα=,∴OF=bcosα,∴DG=a+2bcosα,过H作HM⊥AD于M,∵∠ADC=∠HAD=∠ADH=α,∴AH=HD,∴AM=AD=(2a+2bcosα)=a+bcosα,Rt△AHM中,cosα=,∴AH=,∴==cosα.【点睛】本题是四边形综合题,其中涉及到菱形的性质,等边三角形、全等三角形、平行四边形的判定与性质,综合性较强,难度适中.利用数形结合及类比思想是解题的关键.22、19【解析】

根据平行四边形的性质可知对角线相互平分,,推出即可推出周长.【详解】∵四边形ABCD是平行四边形,∴,OC=AC=,OD=,∴的周长.【点睛】本题主要考查了平行四边的性质,熟知平行四边形的对角线相互平分是解题关键.23、(1);(2)详见解析;(3).【解析】

(1)想办法证明CE=CF,AE=AF,推出AC垂直平分线段EF,即可解决问题;(2)如图②中,连接AC.只要证明△DCE≌△ACF即可解决问题;(3)如图③中,连接AC,作CH⊥AB于H,FM⊥BC交CB的延长线于M.解直角三角形求出AF,FM即可解决问题.【详解】(1)解:如图①中,∵四边形ABCD是菱形,∠ADC=60°,∴DA=DC=AB=BC,∴△ADC,△ABC第三等边三角形,当t=3时,AE=DE=3cm,AF=BF=3cm,∵CA=CD=CB,∴CE⊥AD,CF⊥AB,∵∠CAB=∠CAD,∴CF=CE,∵AE=AF,∴AC垂直平分线段EF,∴∠AGF=90°,∵∠FAG=60°,∴∠AFG=30°,∴AG=AF=cm,(2)如图②中,连接AC.∵四边形ABCD是菱形,∠ADC=60°,∴DA=DC=AB=BC,∴△ADC,△ABC第三等边三角形,∴∠D=∠ACD=∠CAF=60°,DA=AC,∵DE=AF,∴△DCE≌△ACF,∴CE=CF,∠DCE=∠ACF,∴∠ECF=∠ACD=60°,∴△ECF是等边三角形.(3)如图③中,连接AC,作CH⊥AB于H,FM⊥BC交CB的延长线于M.由(2)可知:△ECF是等边三角形,∴CF=CE=3,在Rt△BCH中,∵BC=6,∠CBH=60°,∴BH=3,CH=3,在Rt△CFH中,HF=,∴BF=3﹣3,AF=3+3,∴t=(3+3)s,在Rt△BFM中,∵∠FBM=∠ABC=60°,BF=3﹣3,∴FM=BF•sin60°=.【点睛】本题考查四边形综合题、菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.24、6+2.【解析】

先化简二次根式,再利用乘法分配律计算可得.【详解】原式=(2+2)×=6+2.【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论