版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省盐城市洋马初级中学2024年八年级数学第二学期期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,四边形ABCD中,AB=CD,AD∥BC,AE∥DC∠B=60°,BC=3,△ABE的周长为6,则四边形ABCD的周长是().A.8 B.10 C.12 D.162.如图,平行四边形ABCD中,AB=4,AD=5,AE平分∠BAD交BC边于点E,则CE的长为()A.1 B.2 C.3 D.43.中两条边的长分别为,,则第三边的长为()A. B. C.或 D.无法确定4.如图1,动点K从△ABC的顶点A出发,沿AB﹣BC匀速运动到点C停止.在动点K运动过程中,线段AK的长度y与运动时间x的函数关系如图2所示,其中点Q为曲线部分的最低点,若△ABC的面积是55,则图2中a的值为()A.30 B.5 C.7 D.355.如图,△ABC中,∠C=90°,ED垂直平分AB,若AC=12,EC=5,且△ACE的周长为30,则BE的长为()A.5 B.10 C.12 D.136.小华同学某体育项目7次测试成绩如下(单位:分):9,7,1,8,1,9,1.这组数据的中位数和众数分别为()A.8,1 B.1,9 C.8,9 D.9,17.在实数0,,,-1中,最小的是()A.0 B. C. D.8.如图,正方形ABCD的对角线相交于点O,点O又是正方形A1B1C1O的一个顶点,且这两个正方形的边长都为1.若正方形A1B1C1O绕点O转动,则两个正方形重叠部分的面积为()A.16 B.4 C.1 D.19.下列方程中,属于一元二次方程的是()A. B. C. D.10.已知:x1,x2,x3...x10的平均数是a,x11,x12,x13...x50的平均数是b,则x1,x2,x3...x50的平均数是()A.a+b B. C. D.二、填空题(每小题3分,共24分)11.请你写出一个一次函数,使它经过二、三、四象限_____.12.如图,点A是反比例函数图象上的一点,过点A作AB⊥x轴于点B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为3,则反比例函数的解析式是______.13.如图,将Rt△ABC绕直角顶点A按顺时针方向旋转180°得△AB1C1,写出旋转后BC的对应线段_____.14.甲、乙两同学参加学校运动员铅球项目选拔赛,各投掷6次,记录成绩,计算平均数和方差的结果为:,则成绩较稳定的是_______(填“甲”或“乙”).15.化简二次根式的结果是______.16.某班同学要测量学校升国旗的旗杆高度,在同一时刻,量得某同学的身高是1.5米,影长是1米,且旗杆的影长为8米,则旗杆的高度是_________________米.17.若,则_______(填不等号).18.为了改善生态环境,防止水土流失,红旗村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵数是原计划的2倍,结果提前4天完成任务,则原计划每天种树的棵数是________.三、解答题(共66分)19.(10分)在学校组织的“学习强国”知识竞赛中,每班参加比赛的人数相同,成绩分为,,,四个等级其中相应等级的得分依次记为分,分,分和分.年级组长张老师将班和班的成绩进行整理并绘制成如下的统计图:(1)在本次竞赛中,班级的人数有多少。(2)请你将下面的表格补充完整:成绩班级平均数(分)中位数(分)众数(分)B级及以上人数班班(3)结合以上统计量,请你从不同角度对这次竞赛成绩的结果进行分析(写出两条)20.(6分)小明骑单车上学,当他骑了一段路时起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是米,本次上学途中,小明一共行驶了米;(2)小明在书店停留了分钟,本次上学,小明一共用了分钟;(3)在整个上学的途中那个时间段小明骑车速度最快,最快的速度是多少?21.(6分)如图,两个全等的Rt△AOB、Rt△OCD分别位于第二、第一象限,∠ABO=∠ODC=90°,OB、OD在x轴上,且∠AOB=30°,AB=1.(1)如图1中Rt△OCD可以看作由Rt△AOB先绕点O顺时针旋转度,再绕斜边中点旋转度得到的,C点的坐标是;(2)是否存在点E,使得以C、O、D、E为顶点的四边形是平行四边形,若存在,写出E点的坐标;若不存在请说明理由.(3)如图2将△AOC沿AC翻折,O点的对应点落在P点处,求P点的坐标.22.(8分)先阅读下面的内容,再解决问题:问题:对于形如这样的二次三项式,可以用公式法将它分解成的形式.但对于二次三项式,就不能直接运用公式了.此时,我们可以在二次三项式中先加上一项,使它与成为一个完全平方式,再减去,整个式子的值不变,于是有:像这样,先添一适当项,使式中出现完全平方式,再减去这项,使整个式子的值不变的方法称为“配方法”.利用“配方法”,解决下列问题:(1)分解因式:______;(2)若△ABC的三边长是a,b,c,且满足,c边的长为奇数,求△ABC的周长的最小值;(3)当x为何值时,多项式有最大值?并求出这个最大值.23.(8分)某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件.市场调查发现:如果每件的售价每涨1元(售价每件不能高于45元),那么每星期少卖10件,设每件涨价x元(x为非负整数),每星期的销量为y件.(1)写出y与x的关系式;(2)要使每星期的利润为1560元,从有利于消费者的角度出发,售价应定为多少?24.(8分)解分式方程:25.(10分)若关于的一元二次方程有实数根,.(1)求实数的取值范围;(2)设,求的最小值.26.(10分)已知:如图,在菱形ABCD中,AC、BD交于点O,菱形的周长为8,∠ABC=60°,求BD的长和菱形ABCD的面积.
参考答案一、选择题(每小题3分,共30分)1、A【解析】
根据平行四边形的判定和等腰梯形的性质,证明△ABE是等边三角形,从而可知等腰梯形的腰长,也就可以求出其周长.【详解】解:∵AD∥BC,AE∥DC∴四边形ADCE为平行四边形∴EC=AD,AE=CD∵AB=CD∴AB=AE又∵∠B=60°,∴△ABE是等边三角形,∵△ABE的周长为6,∴BE=2,∵BC=3,∴EC=AD=1,∴等腰梯形的周长=AB+BC+CD+AD=2+3+2+1=8,故选A.【点睛】此题主要考查学生对等腰梯形的性质及平行四边形的性质的掌握情况.2、A【解析】
由平行四边形的性质得出BC=AD=5,AD∥BC,得出∠DAE=∠BEA,证出∠BEA=∠BAE,得出BE=AB,即可得出CE的长.【详解】解:∵四边形ABCD是平行四边形,∴BC=AD=5,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BE=AB=4,∴CE=BC-BE=1;故选:A.【点睛】此题考查平行四边形的性质,等腰三角形的判定,熟练掌握平行四边形的性质,并能进行推理计算是解题的关键.3、C【解析】
分b是直角边、b是斜边两种情况,根据勾股定理计算.【详解】解:当b是直角边时,斜边c==,
当b是斜边时,直角边c==,
则第三边c的长为和,
故选:C.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.4、A【解析】
根据题意可知AB=AC,点Q表示点K在BC中点,由△ABC的面积是15,得出BC的值,再利用勾股定理即可解答.【详解】由图象的曲线部分看出直线部分表示K点在AB上,且AB=a,曲线开始AK=a,结束时AK=a,所以AB=AC.当AK⊥BC时,在曲线部分AK最小为1.所以12BC×1=15,解得BC=25所以AB=52故选:A.【点睛】此题考查动点问题的函数图象,解题关键在于结合函数图象进行解答.5、D【解析】
ED垂直平分AB,BE=AE,在通过△ACE的周长为30计算即可【详解】解:∵ED垂直平分AB,∴BE=AE,∵AC=12,EC=5,且△ACE的周长为30,∴12+5+AE=30,∴AE=13,∴BE=AE=13,故选:D.【点睛】本题考查了线段的垂直平分线的性质,熟知线段垂直平分线上的点到线段两端点的距离相等是解答此题的关键.6、D【解析】试题分析:把这组数据从小到大排列:7,8,9,9,1,1,1,最中间的数是9,则中位数是9;1出现了3次,出现的次数最多,则众数是1;故选D.考点:众数;中位数.7、B【解析】
正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】|-3|=3,
根据实数比较大小的方法,可得
-<−1<0<3,
所以在实数0、-、|-3|、-1中,最小的是-.
故选:B.【点睛】考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.8、C【解析】
在正方形ABCD中,OA=OB,∠OAE=∠OBF=45°,∵∠AOE+∠BOE=90°,∠BOF+∠BOE=90°,∴∠AOE=∠BOF,在△AOE与△BOF中,,∴△AOE≌△BOF(ASA),则四边形OEBF的面积=S△BOE+S△BOF=S△BOE+S△AOE=S△AOB=S正方形ABCD==1.故选C.9、B【解析】
利用一元二次方程的定义对选项进行判断即可.【详解】解:A、2x﹣1=3x是一元一次方程,不符合题意;B、x2=4是一元二次方程,符合题意;C、x2+3y+1=0是二元二次方程,不符合题意;D、x3+1=x是一元三次方程,不符合题意,故选:B.【点睛】此题考查一元二次方程的定义,熟练掌握方程的定义是解本题的关键.10、D【解析】
根据平均数及加权平均数的定义解答即可.【详解】∵x1,x2,x3...x10的平均数是a,x11,x12,x13...x50的平均数是b,∴x1,x2,x3...x50的平均数是:.故选D.【点睛】本题考查了平均数及加权平均数的求法,熟练运用平均数及加权平均数的定义求解是解决问题的关键.二、填空题(每小题3分,共24分)11、答案不唯一:如y=﹣x﹣1.【解析】
根据已知可画出此函数的简图,再设此一次函数的解析式为:y=kx+b,然后可知:k<0,b<0,即可求得答案.【详解】∵图象经过第二、三、四象限,∴如图所示.设此一次函数的解析式为:y=kx+b,∴k<0,b<0,∴此题答案不唯一:如y=﹣x﹣1.故答案为:答案不唯一:如y=﹣x﹣1.【点睛】本题考查了一次函数的性质.题目难度不大,注意数形结合思想的应用.12、(x<0)【解析】
连结OA,如图,利用三角形面积公式得到,再根据反比例函数的比例系数k的几何意义得到|k|=3,然后去绝对值即可得到满足条件的k的值.【详解】解:连结OA,如图,
∵AB⊥x轴,
∴OC∥AB,
∴S△OAB=S△CAB=3,∵∴|k|=3,
∵k<0,
∴k=-1.∴反比例函数的解析式为(x<0)
故答案为:(x<0).【点睛】本题考查了反比例函数的比例系数k的几何意义:在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.13、B1C1.【解析】
根据旋转的性质解答即可.【详解】∵将Rt△ABC绕直角顶点A按顺时针方向旋转180°得△AB1C1,∴△ABC≌△AB1C1,∴BC=B1C1,∴旋转后BC的对应线段是B1C1,故答案为:B1C1.【点睛】本题考查了旋转的性质,熟记旋转的各种性质以及旋转的三要素是解题的关键.14、乙.【解析】
方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越小,说明数据的波动越小,越稳定.【详解】解:∵S甲2=1.61>S乙2=1.51,∴成绩较稳定的是是乙.【点睛】本题考查方差的意义.方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越小,说明数据的波动越小,越稳定.15、【解析】
利用二次根式的性质化简.【详解】=.故选为:.【点睛】考查了二次根式的化简,常用方法:①利用二次根式的基本性质进行化简;②利用积的算术平方根的性质和商的算术平方根的性质进行化简.16、1.【解析】
在同一时刻,物体的实际高度和影长成比例,据此列方程即可解答.【详解】解:设旗杆高度为x,则,解得x=1.故答案为:1.【点睛】本题考查相似三角形的应用,熟知同一时刻物高与影长成正比是解题关键.17、<【解析】试题分析:根据不等式的基本性质3,直接求解得a<b.故答案为<18、120【解析】【分析】设原计划每天种树x棵,则实际每天种树2x棵,根据题意列出分式方程,解之即可.【详解】设原计划每天种树x棵,则实际每天种树2x棵,依题可得:,解得:x=120,经检验x=120是原分式方程的根,故答案为:120.【点睛】本题考查了列分式方程解应用题,弄清题意,找出等量关系是解题的关键.三、解答题(共66分)19、(1)9人;(2)见解析;(3)略.【解析】
(1)根据一班的成绩统计可知一共有25人,因为每班参加比赛的人数相同,用总人数乘以C级以上的百分比即可得出答案,(2)根据平均数、众数、中位数的概念,结合一共有25人,即可得出答案.(3)分别从级及以上人数和众数的角度分析那个班成绩最好即可.【详解】解:(1)班有人,人.所以班C级人数有9人(2)请你将下面的表格补充完整:平均数(分)中位数(分)众数(分)级及以上人数班87.69018班87.6100(3)从级及以上人数条看,班的人数多于班人数,此时班的成绩好些从众数的角度看,班的众数高于班众数,此时802班的成绩差一些.【点睛】本题考查条形统计图和扇形统计图,熟练掌握计算法则是解题关键.20、(1)1500,2700;(2)4,1;(3)在整个上学的途中从12分钟到1分钟小明骑车速度最快,最快的速度是450米/分.【解析】
(1)因为轴表示路程,起点是家,终点是学校,故小明家到学校的路程是1500米;共行驶的路程小明家到学校的距离折回书店的路程.(2)与轴平行的线段表示路程没有变化,观察图象分析其对应时间即可.(3)观察图象分析每一时段所行路程,然后计算出各时段的速度进行比较即可.【详解】解:(1)轴表示路程,起点是家,终点是学校,小明家到学校的路程是1500米.(米即:本次上学途中,小明一共行驶了2700米.(2)由图象可知:小明在书店停留了4分钟.本次上学,小明一共用了1分钟;(3)折回之前的速度(米分),折回书店时的速度(米分),从书店到学校的速度(米分),经过比较可知:小明在从书店到学校的时候速度最快,即:在整个上学的途中从12分钟到1分钟小明骑车速度最快,最快的速度是450米分.故答案是:(1)1500,2700;(2)4,1.【点睛】本题考查了函数的图象及其应用,解题的关键是理解函数图象中轴、轴表示的量及图象上点的坐标的意义.21、(1)90,180,(1,);(2)存在,E的坐标为(0,)或(2,),或(0,﹣);(3)P(1﹣,1+).【解析】
(1)先求出OB,再由旋转求出OD,CD,即可得出结论;(2)先求出D的坐标,再分三种情况,利用平行四边形的性质即可得出结论;(3)先判断出四边形OAPC是正方形,再利用中点坐标公式即可得出结论【详解】解:(1)Rt△OCD可以看作由Rt△AOB先绕点O顺时针旋转90°,再绕斜边中点旋转180°得到的,在Rt△AOB中,∠AOB=30°,AB=1,∴OB=,由旋转知,OD=AB=1,CD=OB=,∴C(1,),故答案为90,180,(1,);(2)存在,理由:如图1,由(1)知,C(1,),∴D(1,0),∵O(0,0),∵以C、O、D、E为顶点的四边形是平行四边形,∴①当OC为对角线时,∴CE∥OD,CE=OD=1,点E和点B'重合,∴E(0,),②当CD为对角线时,CE∥OD,CE=OD=1,∴E(2,),当OD为对角线时,OE'∥CD,OE'=CD,∴E(0,﹣),即:满足条件的E的坐标为(0,)或(2,),或(0,﹣);(3)由旋转知,OA=OC,∠OCD=∠AOB=30°,∴∠COD=90°﹣∠OCD=60°,∴∠AOC=90°,由折叠知,AP=OA,PC=OC,∴四边形OAPC是正方形,设P(m,n)∵A(﹣,1),C(1,),O(0,0),∴(m+0)=(1﹣),(n+0)=(1+),∴m=1﹣,n=1+,∴P(1﹣,1+).【点睛】此题考查翻折变换(折叠问题),平行四边形的性质和旋转的性质,解题关键在于掌握各性质和做辅助线22、(1)(a−3)(a−1);(2)当a=7,b=4,c=1时,△ABC的周长最小,最小值是:7+4+1=16;(3)当x=−1时,多项式−2x2−4x+3有最大值,最大值是1.【解析】
(1)根据题目中的例子,可以对题目中的式子配方后分解因式;(2)根据题目中的式子,利用配方法可以求得a、b的值,根据三角形三边关系确定c的值,由三角形周长可得结论;(3)根据配方法即可求出答案.【详解】解:(1)a2−8a+11=(a2−8a+16)−1=(a−4)2−12=(a−3)(a−1),故答案为:(a−3)(a−1);(2)∵a2+b2−14a−8b+61=0,∴(a2−14a+49)+(b2−8b+16)=0,∴(a−7)2+(b−4)2=0,∴a−7=0,b−4=0,解得,a=7,b=4,∵△ABC的三边长是a,b,c,∴3<c<11,又∵c边的长为奇数,∴c=1,7,9,当a=7,b=4,c=1时,△ABC的周长最小,最小值是:7+4+1=16;(3)−2x2−4x+3,=−2(x2+2x+1−1)+3,=−2(x+1)2+1,∴当x=−1时,多项式−2x2−4x+3有最大值,最大值是1.【点睛】本题考查配方法,三角形三边关系,解题的关键是正确理解题意给出的方法,解决问题,本题属于基础题型.23、(1)y=150-10x(0≤x≤5且x为整数);(2)售价应定为42元.【解析】
(1)根据每周销量=150-10×每件涨价钱数,即可得出y与x的关系式;(2)根据每周的总利润=每件商品的利润×每周的销量,可得关于x的一元二次方程,解之即得x的值,取其较小者代入40+x即可得出结论.【详解】解:(1)由题意,得y=150-10x(0≤x≤5且x为整数);(2)设每星期的利润为w元,则w=(40+x-30)y=(x+10)(150-10x)=-10x2+50x+1500,要使每星期的利润为1560元,则w=1560,即-10x2+50x+1500=1560.解这个方程得:x1=2,x2=3.∴当x=2或3时,可使每星期的利润为1560元,从有利于消费者的角度出发,应取x=2,此时40+x=42,即售价应定为42元.【点睛】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 聊城2024年健身服务合同
- 统编人教版六年级语文上册《语文园地七》精美课件
- 土地承包权协议书范本版
- 皮下注射技术操作流程课件
- 农村私人土地买卖合同范本
- 二零二四年度商务考察与招商合同2篇
- 益生菌奶粉课件
- 2024年度离岗创业人员培训服务合同
- 租房定金合同范本共
- 财务模拟述职报告范文
- 五年(2020-2024)高考语文真题分类汇编专题07 大作文(原卷版)
- 糖尿病中医辨证及治疗
- 从理论到实践:2024年ESD防护培训课程详解
- 2024-2030年中国洁具行业发展趋势及竞争力策略分析报告
- 职场培训课件教学课件
- 2024年新疆(兵团)公务员考试《行测》真题及答案解析
- 2024北京初三一模语文汇编:基础知识综合
- 2025届江苏省南通市海安中学物理高一上期末质量检测试题含解析
- 医疗设备安装与调试工程方案
- 税务会计岗位招聘面试题与参考回答(某世界500强集团)2024年
- 2024年中国反病毒邮件网关市场调查研究报告
评论
0/150
提交评论