版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省罗山县联考2024年八年级下册数学期末达标检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.若是关于,的二元一次方程,则()A., B., C., D.,2.如图,已知在平行四边形中,是对角线上的两点,则以下条件不能判断四边形是平行四边形的是()A.B.C.D.3.下列各组线段a、b、c中不能组成直角三角形的是()A.a=8,b=15,c=17 B.a=7,b=24,c=25C.a=40,b=50,c=60 D.a=,b=4,c=54.如图,将边长为2的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为()A.(﹣2,1) B.(﹣1,2) C.(,﹣1) D.(﹣,1)5.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是().A.当AB=BC时,它是菱形B.当AC=BD时,它是正方形C.当∠ABC=90º时,它是矩形D.当AC⊥BD时,它是菱形6.一次函数y2x2的大致图象是()A. B. C. D.7.如图,过点作轴的垂线,交直线于点;点与点关于直线对称;过点作轴的垂线,交直线于点;点与点关于直线对称;过点作轴的垂线,交直线于点;按此规律作下去,则点的坐标为A.(2n,2n-1) B.(,) C.(2n+1,2n) D.(,)8.如图,在ΔABC中,AB=3,BC=2,D、E、F分别为AB、BC、AC的中点,连接DF、FE,则四边形DBEF的周长是()A.5 B.7 C.9 D.119.若分式有意义,则实数x的取值范围是()A. B. C. D.10.下列计算错误的是()A.﹣= B.÷2=C. D.3+2=5二、填空题(每小题3分,共24分)11.如图,在等边中,cm,射线,点从点出发沿射线以的速度运动,点从点出发沿射线以的速度运动,如果点、同时出发,当以点、、、为顶点的四边形是平行四边形时,运动时间为____.12.一个黄金矩形的长为2,则其宽等于______.13.因式分解:x2﹣x=______.14.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为______.15.将正比例函数的图象向右平移2个单位,则平移后所得到图象对应的函数解析式是__________.16.计算:_______.17.若二次根式在实数范围内有意义,则实数x的取值范围是_____.18.已知关于x的方程=1的解是负值,则a的取值范围是______.三、解答题(共66分)19.(10分)如图,在边长为1个单位长度的小正方形组成的网络中,给出了△ABC和△DEF(网点为网格线的交点)(1)将△ABC向左平移两个单位长度,再向上平移三个单位长度,画出平移后的图形△A1B2C3;(2)画出以点O为对称中心,与△DEF成中心对称的图形△D2E2F2;(3)求∠C+∠E的度数.20.(6分)如图,平行四边形ABCD的对角线AC,BD相交于点O,E、F分别是OA、OC的中点.求证:BE=DF21.(6分)如图,在平面直角坐标系中,正方形OABC的边长为4,边OA,OC分别在x轴,y轴的正半轴上,把正方形OABC的内部及边上,横、纵坐标均为整数的点称为好点.点P为抛物线的顶点.(1)当时,求该抛物线下方(包括边界)的好点个数.(2)当时,求该抛物线上的好点坐标.(3)若点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点,求m的取值范围.22.(8分)某商厦进货员预测一种应季衬衫能畅销市场,就用万元购进这种衬衫,面市后果然供不应求.商厦又用万元购进第二批这种衬衫,所购数量是第一批进量的倍,但单价贵了元.商厦销售这种衬衫时每件定价元,最后剩下件按八折销售,很快售完.在这两笔生意中,商厦共盈利多少元?23.(8分)如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形中,,,问四边形是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形的对角线、交于点,.试证明:;(3)解决问题:如图3,分别以的直角边和斜边为边向外作正方形和正方形,连结、、.已知,,求的长.24.(8分)已知关于x的一元二次方程x2﹣(k+1)x+2k﹣2=1.(1)求证:此方程总有两个实数根;(2)若此方程有一个根大于1且小于1,求k的取值范围.25.(10分)如图,在平行四边形ABCD中,∠ABC的平分线与CD的延长线交于点E,与AD交于点F,且点F恰好为边AD的中点.(1)求证:△ABF≌△DEF;(2)若AG⊥BE于G,BC=4,AG=1,求BE的长.26.(10分)如图,在平面直角坐标系中,直线y1=x+1与双曲线(k>0)相交于点A、B,已知点A坐标(2,m).(1)求k的值;(2)求点B的坐标,并观察图象,写出当时,x的取值范围.
参考答案一、选择题(每小题3分,共30分)1、D【解析】
根据二元一次方程的定义可知,m、n应满足以下4个关系式:,解之即得.【详解】解:由题意是关于,的二元一次方程,于是m、n应满足,解得,,故选D.【点睛】本题考查了二元一次方程的定义,认真审题并列出m、n应满足的4个关系式是解决此题的关键.2、A【解析】
连接AC与BD相交于O,根据平行四边形的对角线互相平分可得OA=OC,OB=OD,再根据对角线互相平分的四边形是平行四边形,只要证明得到OE=OF即可,然后根据各选项的条件分析判断即可得解.【详解】解:如图,连接AC与BD相交于O,
在▱ABCD中,OA=OC,OB=OD,
要使四边形AECF为平行四边形,只需证明得到OE=OF即可;
A、AF=EF无法证明得到OE=OF,故本选项正确.
B、∠BAE=∠DCF能够利用“角角边”证明△ABE和△CDF全等,从而得到DF=BE,则OB-BE=OD-DF,即OE=OF,故本选项错误;
C、若AF⊥CF,CE⊥AE,由直角三角形的性质可得OE=AC=OF,故本选项错误;
D、若BE=DF,则OB-BE=OD-DF,即OE=OF,故本选项错误;
故选:A.【点睛】本题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定方法是解题的关键.3、C【解析】
这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】解:、因为,所以能组成直角三角形;、因为,所以能组成直角三角形;、因为,所以不能组成直角三角形;、因为,所以能组成直角三角形.故选:C.【点睛】本题考查勾股定理的逆定理的应用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.4、D【解析】
首先过点C作CD⊥x轴于点D,过点A作AE⊥x轴于点E,易证得△AOE≌△OCD(AAS),则可得CD=OE=1,OD=AE=,继而求得答案.【详解】解:过点C作CD⊥x轴于点D,过点A作AE⊥x轴于点E,
则∠ODC=∠AEO=90°,
∴∠OCD+∠COD=90°,
∵四边形OABC是正方形,
∴OC=OA,∠AOC=90°,
∴∠COD+∠AOE=90°,
∴∠OCD=∠AOE,
在△AOE和△OCD中,,
∴△AOE≌△OCD(AAS),
∴CD=OE=1,OD=AE=,
∴点C的坐标为:(-,1).
故选:D.【点睛】本题考查了正方形的性质、全等三角形的判定与性质以及勾股定理.注意准确作出辅助线、证得△AOE≌△OCD是解题的关键.5、B【解析】分析:A、根据菱形的判定方法判断,B、根据正方形的判定方法判断,C、根据矩形的判定方法判断,D、根据菱形的判定方法判断.详解:A、菱形的判定定理,“一组邻边相等的平行四边形是菱形”,故A项正确;B、由正方形的判定定理,“对角线互相垂直且相等的平行四边形是正方形”可知,对角线仅相等的平行四边形是矩形,故B项错误;C、矩形的判定定理,“一个角是直角的平行四边形是矩形”,故C项正确;D、菱形的判定定理,“对角线互相垂直的平行四边形是菱形”,故D项正确。故选B.点睛:本题考查了矩形、菱形、正方形的判定方法,熟练掌握矩形、菱形、正方形的判定方法是解答本题的关键.6、A【解析】
先判断出k、b的值,再根据一次函数的性质可画出函数的大致图象.【详解】解:∵k=2,b=-2,∴函数y=2x-2的图象经过第一、三、四象限.故选:A.【点睛】一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.7、B【解析】
先根据题意求出点A2的坐标,再根据点A2的坐标求出B2的坐标,以此类推总结规律便可求出点的坐标.【详解】∵∴∵过点作轴的垂线,交直线于点∴∵∴∵过点作轴的垂线,交直线于点∴∵点与点关于直线对称∴以此类推便可求得点An的坐标为,点Bn的坐标为故答案为:B.【点睛】本题考查了坐标点的规律题,掌握坐标点的规律、轴对称的性质是解题的关键.8、A【解析】
先根据三角形中位线性质得DF=12BC=1,DF∥BC,EF=12AB=32,EF∥AB【详解】解:∵D、E、F分别为AB、BC、AC中点,
∴DF=12BC=1,DF∥BC,EF=12AB=32,EF∥AB,
∴四边形DBEF为平行四边形,
∴四边形DBEF的周长=2(DF+EF)=2×(1+32)=1.【点睛】本题考查三角形中位线定理和四边形的周长,解题的关键是掌握三角形中位线定理.9、C【解析】
根据分式有意义的条件即可解答.【详解】∵分式有意义,∴x+4≠0,∴.故选C.【点睛】本题考查了分式有意义的条件,熟知分式有意义的条件(分式有意义,分母不为0)是解决问题的关键.10、D【解析】
利用二次根式加减乘除的运算方法逐一计算得出答案,进一步比较选择即可【详解】A.﹣=,此选项计算正确;B.÷2=,此选项计算正确;C.,此选项计算正确;D.3+2.此选项不能进行计算,故错误故选D【点睛】此题考查二次根式的混合运算,掌握运算法则是解题关键二、填空题(每小题3分,共24分)11、1或3【解析】
用t表示出AE和CF,当AE=CF时,以点、、、为顶点的四边形是平行四边形,据此求解即可.【详解】解:设运动时间为t,则AE=tcm,BF=2tcm,∵是等边三角形,cm,∴BC=3cm,∴CF=,∵AG∥BC,∴AE∥CF,∴当AE=CF时,以点、、、为顶点的四边形是平行四边形,∴=t,∴2t-3=t或3-2t=t,∴t=3或t=1,故答案是:1或3.【点睛】本题考查了平行四边形的判定,平行四边形有很多判定定理,结合题目条件找到所缺的合适的判定条件是解题的关键.12、【解析】
由黄金矩形的短边与长边的比为,可设黄金矩形的宽为x,列方程即可求出x的值.【详解】解:∵黄金矩形的短边与长边的比为,∴设黄金矩形的宽为x,则,解得,x=﹣1,故答案为:.【点睛】本题考查了黄金矩形的性质,解题关键是要知道黄金矩形的短边与长边的比为.13、x(x﹣1)【解析】分析:提取公因式x即可.详解:x2−x=x(x−1).故答案为:x(x−1).点解:本题主要考查提公因式法分解因式,准确找出公因式是解题的关键.14、1.1【解析】
试题解析:∵∠AFB=90°,D为AB的中点,∴DF=AB=2.1,∵DE为△ABC的中位线,∴DE=BC=4,∴EF=DE-DF=1.1,故答案为1.1.【点睛】直角三角形斜边上的中线性质:在直角三角形中,斜边上的中线等于斜边的一半和三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.15、【解析】
根据“左加右减”的法则求解即可.【详解】解:将正比例函数的图象向右平移2个单位,得=,故答案为:.【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键.16、2【解析】
先把二次根式化为最简二次根式,然后将括号内的式子进行合并,最后进一步加以计算即可.【详解】原式,故答案为:2.【点睛】本题主要考查了二次根式的混合运算,熟练掌握相关运算法则是解题关键.17、x<1【解析】
直接利用二次根式有意义的条件分析得出答案.【详解】解:∵二次根式在实数范围内有意义,∴1﹣x>0,解得:x<1.故答案为:x<1.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.18、a<-2且a≠-4【解析】
表示出分式方程的解,由分式方程的解为负值,确定出a的范围即可.【详解】解:方程=1,去分母得:2x-a=x+2,解得:x=a+2,由分式方程的解为负值,得到a+2<0,且a+2≠-2,解得:a<-2且a≠-4,故答案为:a<-2且a≠-4【点睛】此题考查了解分式方程以及解一元一次不等式,熟练掌握运算法则是解本题的关键.易错点是容易忽略x+2≠0这一条件.三、解答题(共66分)19、(1)见解析;(2)见解析;(3)45°【解析】
(1)利用网格特点和平移的性质画出点A、B、C的对应点A1、B2、C3,从而得到△A1B2C3;(2)利用网格特点和中心对称的性质画出D、E、F的对应点D2、E2、F2,从而得到△D2E2F2;(3)利用平移和中心对称的性质得到∠C=∠A1C3B2,∠E=∠D2E2F2,则∠C+∠E=∠A1C3F2,连接A1F2,如图,利用勾股定理的逆定理证明△A1F2C3为等腰直角三角形得到∠A1C3F2=45°,从而得到∠C+∠E的度数.【详解】(1)如图,△A1B2C3为所作;(2)如图,△D2E2F2为所作;(3)∵△ABC平移后的图形△A1B2C3,∴∠C=∠A1C3B2,∵△DEF关于点O成中心对称的图形为△D2E2F2,∴∠E=∠D2E2F2,∴∠C+∠E=∠A1C3B2+∠D2E2F2=∠A1C3F2,连接A1F2,如图,A1F2==,A1C3==,F2C3==,∴A1F22+A1C32=F2C32,∴△A1F2C3为等腰直角三角形,∠F2A1C3=90°,∴∠A1C3F2=45°,∴∠C+∠E的度数为45°.【点睛】此题主要考查了作图--平移和中心对称、运用勾股定理的逆定理判断三角形是直角三角形的相关知识,解题的关键是正确确定组成图形的关键点在变换后的对应点的位置.20、详见解析【解析】
根据题意可得BO=DO,再由E、F是AO、CO的中点可得EO=FO,即可证全等求出BE=DF.【详解】∵ABCD是平行四边形,∴BO=DO,AO=CO,∵E、F分别是OA、OC的中点,∴EO=FO,又∵∠COD=∠BOE,∴△BOE≌△DOF(SAS),∴BE=DF.【点睛】本题考查三角形全等,关键在于由平行四边形的性质得出有用的条件,再根据图形判断全等所需要的条件.21、(1)好点有:,,,和,共5个;(2),和;(3).【解析】
(1)如图1中,当m=0时,二次函数的表达式y=﹣x2+2,画出函数图象,利用图象法解决问题即可;(2)如图2中,当m=3时,二次函数解析式为y=﹣(x﹣3)2+5,如图2,结合图象即可解决问题;(3)如图3中,抛物线的顶点P(m,m+2),推出抛物线的顶点P在直线y=x+2上,由点P在正方形内部,则0<m<2,如图3中,E(2,1),F(2,2),观察图象可知,当点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点时,抛物线与线段EF有交点(点F除外),求出抛物线经过点E或点F时Dm的值,即可判断.【详解】解:(1)当时,二次函数的表达式为画出函数图像(图1)图1当时,;当时,抛物线经过点和好点有:,,,和,共5个(2)当时,二次函数的表达式为画出函数图像(图2)图2当时,;当时,;当时,该抛物线上存在好点,坐标分别是,和(3)抛物线顶点P的坐标为点P支直线上由于点P在正方形内部,则如图3,点,图3当顶点P支正方形OABC内,且好点恰好存在8个时,抛物线与线段EF有交点(点F除外)当抛物线经过点时,解得:,(舍去)当抛物线经过点时,解得:,(舍去)当时,顶点P在正方形OABC内,恰好存在8个好点【点睛】本题属于二次函数综合题,考查了正方形的性质,二次函数的性质,好点的定义等知识,解题的关键是理解题意,学会正确画出图象,利用图象法解决问题,学会利用特殊点解决问题.22、商厦共盈利元.【解析】
根据题意找出等量关系即第二批衬衫的单价-第一批衬衫的单价=4元,列出方程,可求得两批购进衬衫的数量;再设这笔生意盈利y元,可列方程为y+80000+176000=58(1+4000-150)+80%×58×150,可求出商厦的总盈利.【详解】设第一批购进x件衬衫,则第二批购进了2x件,依题意可得:,解得x=1.经检验x=1是方程的解,故第一批购进衬衫1件,第二批购进了4000件.设这笔生意盈利y元,可列方程为:y+80000+176000=58(1+4000-150)+80%×58×150,解得y=2.答:在这两笔生意中,商厦共盈利2元.【点睛】本题主要考查分式方程的应用,解题的关键是找出题中的等量关系.注意:求出的结果必须检验且还要看是否符合题意23、(1)四边形是垂美四边形,理由见解析;(2)证明见解析;(3).【解析】
(1)根据垂直平分线的判定定理,可证直线是线段的垂直平分线,结合“垂美四边形”的定义证明即可;(2)根据垂直的定义和勾股定理解答即可;(3)连接、,先证明,得到∴,可证,即,从而四边形是垂美四边形,根据垂美四边形的性质、勾股定理、结合(2)的结论计算即可.【详解】(1)四边形是垂美四边形.证明:连接AC,BD,∵,∴点在线段的垂直平分线上,∵,∴点在线段的垂直平分线上,∴直线是线段的垂直平分线,∴,即四边形是垂美四边形;(2)猜想结论:垂美四边形的两组对边的平方和相等.如图2,已知四边形中,,垂足为,求证:证明:∵,∴,由勾股定理得,,,∴;故答案为:.(3)连接、,∵,∴,即,在和中,,∴,∴,又,∴,即,∴四边形是垂美四边形,由(2)得,,∵,,∴,,,∴,∴.【点睛】本题考查的是正方形的性质、全等三角形的判定和性质、垂直的定义、勾股定理的应用,正确理解垂美四边形的定义、灵活运用勾股定理是解题的关键.24、(3)证明见解析;(2)3<k<2.【解析】
(3)根据方程的系数结合根的判别式,求得判别式恒成立,因此得证;(2)利用求根公式求根,根据有一个跟大于3且小于3,列出关于的不等式组,解之即可.【详解】(3)证明:△=b2-4ac=[-(k+3)]2-4×(2k-2)=k2-6k+9=(k-3)2,∵(k-3)2≥3,即△≥3,∴此方程总有两个实数根,(2)解:解得
x3=k-3,x2=2,∵此方程有一个根大于3且小于3,而x2>3,∴3<x3<3,即3<k-3<3.∴3<k<2,即k的取值范围为:3<k<2.【点睛】本题考查了根的判别式,解题的关键是:(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度股权转让协议范本及股权价值评估
- 04版厂房与办公区分割使用权转让合同
- 2024年度特许经营合同加盟一家
- 二零二四年度品牌代理合同:品牌方与代理商之间的市场拓展与销售权益分配
- 二零二四年度苯板行业市场发展趋势分析合同
- 2024年度产品技术改进与转让合同
- 二零二四年度健身房设施建设及运营管理合同
- 杂志宣传合同范本
- 2024年度物流服务合同书
- 2024年度离婚双方艺术品买卖合同
- 房屋中止拍卖申请书
- 剑桥少儿英语Kid's-box-1-Unit4课件
- 草原改良协议书
- 稍复杂的分数乘法实际问题(课件)六年级上册数学苏教版
- 初中数学-5.4平行线的性质定理和判定定理教学设计学情分析教材分析课后反思
- 人民币、反假货币知识课件
- 刮痧技术课件
- 医院呼吸机运行期预防性维护全面管理方案包括巡检维护保养各种表格
- SWITCH 勇者斗恶龙11S 金手指 版本:v1.0.3 最大金币 最大迷你奖章 32倍经验 最大攻击 所有材料
- 流浪人你若到斯巴
- Unit6NurturingnatureUsingLanguage现在完成进行时教学设计高中英语外研版选择性
评论
0/150
提交评论