




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河北省衡水市八校数学八年级下册期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.两个相似三角形的最短边分别为4cm和2cm它们的周长之差为12cm,那么大三角形的周长为()A.18cm B.24cm C.28cm D.30cm2.关于频率与概率有下列几种说法:①“明天下雨的概率是90%”表示明天下雨的可能性很大;②“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上;③“某彩票中奖的概率是1%”表示买10张该种彩票不可能中奖;④“抛一枚硬币正面朝上的概率为”表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在附近,正确的说法是()A.②④ B.②③ C.①④ D.①③3.菱形OABC在平面直角坐标系中的位置如图所示,若OA=2,∠AOC=45°,则B点的坐标是A.(2+,) B.(2﹣,) C.(﹣2+,) D.(﹣2﹣,)4.已知直线y=-x+6交x轴于点A,交y轴于点B,点P在线段OA上,将△PAB沿BP翻折,点A的对应点A′恰好落在y轴上,则的值为()A. B.1 C. D.5.矩形、菱形、正方形都一定具有的性质是()A.邻边相等 B.四个角都是直角C.对角线相等 D.对角线互相平分6.如图,过点A0(1,0)作x轴的垂线,交直线l:y=2x于B1,在x轴上取点A1,使OA1=OB1,过点A1作x轴的垂线,交直线l于B2,在x轴上取点A2,使OA2=OB2,过点A2作x轴的垂线,交直线l于B3,…,这样依次作图,则点B8的纵坐标为()A.()7 B.2()7 C.2()8 D.()97.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是A.55° B.60° C.65° D.70°8.不能判定四边形ABCD为平行四边形的题设是()A.AB=CD,AB∥CD B.∠A=∠C,∠B=∠D C.AB=AD,BC=CD D.AB=CD,AD=BC9.在Rt△ABC中,斜边长AB=3,AB²+AC²+BC²的值为()A.18 B.24 C.15 D.无法计算10.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1) B.(2,1)C.(2,) D.(1,)11.如图,矩形ABCD中,AB=2,BC=4,P为矩形边上的一个动点,运动路线是A→B→C→D→A,设P点经过的路程为x,以A,P,B为顶点的三角形面积为y,则选项图象能大致反映y与x的函数关系的是()A. B. C. D.12.下列命题中的真命题是()A.有一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形C.对角线互相垂直平分的四边形是正方形D.有一组邻边相等的平行四边形是菱形二、填空题(每题4分,共24分)13.计算所得的结果是______________。14.如图,四边形纸片ABCD中,,.若,则该纸片的面积为________.15.在平面直角坐标系中,已知点E(-4,2),F(-2,-2),以原点O为位似中心,相似比为2,把△EFO放大,则点E的对应点E′的坐标是_____.16.已知,,则=______。17.如图,已知点A是反比例函数y在第一象限图象上的一个动点,连接OA,以OA为长,OA为宽作矩形AOCB,且点C在第四象限,随着点A的运动,点C也随之运动,但点C始终在反比例函数y的图象上,则k的值为________.18.直角三角形两条边的长度分别为3cm,4cm,那么第三条边的长度是_____cm.三、解答题(共78分)19.(8分)如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点F的坐标为(-1,5),求点E的坐标.20.(8分),若方程无解,求m的值21.(8分)先化简(1+)÷,再选择一个恰当的x值代人并求值.22.(10分)如图,矩形中,,将矩形绕点旋转得到矩形,使点的对应点落在上,交于点,在上取点,使.(1)求证:;(2)求的度数;(3)若,求的长.23.(10分)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,(1)求∠EAF的度数;(2)在图①中,连结BD分别交AE、AF于点M、N,将△ADN绕点A顺时针旋转90°至△ABH位置,连结MH,得到图②.求证:MN2=MB2+ND2;(3)在图②中,若AG=12,BM=,直接写出MN的值.24.(10分)如图,▱ABCD中,点E在BC延长线上,EC=BC,连接DE,AC,AC⊥AD于点A、(1)求证:四边形ACED是矩形;(2)连接BD,交AC于点F.若AC=2AD,猜想∠E与∠BDE的数量关系,并证明你的猜想.25.(12分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC交BC于点E,连接OE(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.26.计算:(1)(2)
参考答案一、选择题(每题4分,共48分)1、B【解析】
利用相似三角形周长的比等于相似比得到两三角形的周长的比为2:1,于是可设两三角形的周长分别为2xcm,xcm,所以2x﹣x=12,然后解方程求出x后,得出2x即可.【详解】解:∵两个相似三角形的最短边分别为4cm和2cm,∴两三角形的周长的比为4:2=2:1,设两三角形的周长分别为2xcm,xcm,则2x﹣x=12,解得x=12,所以2x=24,即大三角形的周长为24cm.故选:B.【点睛】本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等;相似三角形的周长的比等于相似比;相似三角形的面积的比等于相似比的平方.2、C【解析】
分别利用概率的意义分析得出答案.【详解】①“明天下雨的概率是90%”表示明天下雨的可能性很大;正确;
②“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上;错误;
③“某彩票中奖的概率是1%”表示买10张该种彩票不可能中奖;错误;
④“抛一枚硬币正面朝上的概率为”表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在附近,正确.
故选C.【点睛】此题主要考查了概率的意义,正确理解概率的意义是解题关键.3、D【解析】试题分析:根据题意得C(-2,0),过点B作BD⊥OC,则BD=CD=,则点B的坐标为(-2-,).考点:菱形的性质.4、C【解析】
设:PA=a=PA′,则OP=6-a,OA′=-6,由勾股定理得:PA′2=OP2+OA′2,即可求解.【详解】解:如图,y=-x+6,令x=0,则y=6,令y=0,则x=6,故点A、B的坐标分别为(6,0)、(0,6),则AB==A′B,设:PA=a=PA′,则OP=6-a,OA′=-6,由勾股定理得:PA′2=OA′2+OP2,即(a)2=(-6)2+(6-a)2,解得:a=12-,则PA=12-,OP=−6,则.故选:C.【点睛】本题考查的是一次函数图象上点的坐标特征,关键在于在画图的基础上,利用勾股定理:PA′2=OA′2+OP2,从而求出PA、OP线段的长度,进而求解.5、D【解析】矩形、菱形、正方形都是平行四边形,所以一定都具有的性质是平行四边形的性质,即对角线互相平分.故选D.6、B【解析】
根据一次函数图象上点的坐标特征和等腰三角形的性质即可得到结论.【详解】解:∵A0(1,0),∴OA0=1,∴点B1的横坐标为1,∵B1,B2、B3、…、B8在直线y=2x的图象上,∴B1纵坐标为2,∴OA1=OB1=,∴A1(,0),∴B2点的纵坐标为,于是得到B3的纵坐标为2…∴B8的纵坐标为2故选:B.【点睛】本题考查了一次函数图象上点的坐标特征、等腰直角三角形的性质,解题的关键是找出Bn的坐标的变化规律.7、C【解析】
根据旋转的性质和三角形内角和解答即可.【详解】∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°-20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选C.【点睛】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.8、C【解析】
A.
∵AB=CD,AB∥CD,∴四边形ABCD为平行四边形(一组对边平行且相等的四边形是平行四边形);本选项能判定四边形ABCD为平行四边形;B.
∵∠A=∠C,∠B=∠D,∴四边形ABCD为平行四边形(两组对角分别相等的四边形是平行四边形);本选项能判定四边形ABCD为平行四边形;C.由AB=AD,BC=CD,不能判定四边形ABCD为平行四边形;D.
∵AB=CD,AD=BC,∴四边形ABCD为平行四边形(两组对边分别相等的四边形是平行四边形);本选项能判定四边形ABCD为平行四边形故选C.【点睛】本题考查平行四边形的判定.9、A【解析】
根据题意运用勾股定理进行分析计算即可得出答案.【详解】解:∵Rt△ABC中,斜边是AB,∴AC²+BC²=AB²,∵AB=3,∴AC²+BC²=AB²=9,∴AB²+AC²+BC²=9+9=18.故选:A.【点睛】本题考查勾股定理.根据题意正确判断直角三角形的直角边、斜边,利用勾股定理得出等式是解题的关键.10、C【解析】
由已知条件得到AD′=AD=2,AO=AB=1,根据勾股定理得到OD′=,于是得到结论.【详解】解:∵AD′=AD=2,AO=AB=1,OD′=,∵C′D′=2,C′D′∥AB,
∴C′(2,),
故选D.【点睛】本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.11、B【解析】
根据题意可以分别表示出各段的函数解析式,从而可以根据各段对应的函数图象判断选项的正误即可.【详解】由题意可得,点P到A→B的过程中,y=0(0≤x≤2),故选项C错误,点P到B→C的过程中,y=2(x-2)=x-2(2<x≤6),故选项A错误,点P到C→D的过程中,y=24=4(6<x≤8),故选项D错误,点P到D→A的过程中,y=2(12-x)=12-x(8<x12),由以上各段函数解析式可知,选项B正确,故选B.【点睛】本题考查动点问题的函数图象,明确题意,写出各段函数对应的函数解析式,明确各段的函数图象是解题关键.12、D【解析】
根据平行四边形的判定方法对A进行判断;根据矩形的判定方法对B进行判断;根据正方形的判定方法对C进行判断;根据菱形的判定方法对D进行判断.【详解】A、有两组对边平行的四边形是平行四边形,所以A选项错误;B、有一个角是直角的平行四边形是矩形,所以B选项错误;C、对角线互相垂直平分且相等的四边形是正方形,所以C选项错误;D、有一组邻边相等的平行四边形是菱形,所以D选项正确;故选:D.【点睛】本题是对特殊四边形判断的考查,熟练掌握平行四边形,矩形,正方形,菱形的判断知识是解决本题的关键.二、填空题(每题4分,共24分)13、1【解析】
由于二次根式的乘除运算是同级运算,从左到右依次计算即可.【详解】原式1.故答案为:1.【点睛】本题考查了二次根式的乘除法运算;由于后两项互为倒数,有些同学往往先将它们约分,从而得出结果为5的错误结论,需注意的是同级运算要从左到右依次计算.14、16【解析】
本题可通过作辅助线进行解决,延长AB到E,使BE=DA,连接CE,AC,先证两个三角形全等,利用直角三角形的面积与四边形的面积相等进行列式求解.【详解】解:如图,延长AB到E,使BE=DA,连接CE,AC,∵∠CBE=∠BCA+∠CAB,
∠ADC=180°-∠DCA-∠DAC,
∵∠BCD=90°,∠BAD=90°,
∴∠BCA+∠CAB=90°+90°-∠DCA-∠DAC=180°-∠DCA-∠DAC,
∴∠CBE=∠ADC,
又∵BE=DA,CB=CD,
∴△CBE≌△CDA,
∴CE=CA,∠ECB=∠DCA,
∴∠ECA=90°,∴三角形ACE是等腰直角三角形。∵AE=AB+BE=AB+AD=8cm∴S四边形ABCD=S△AEC=16故答案为:16【点睛】本题考查了面积及等积变换问题;巧妙地作出辅助线,把四边形的问题转化为等腰直角三角形来解决是正确解答本题的关键.15、(-8,4)或(8,-4)【解析】
由在平面直角坐标系中,已知点E(-4,2),F(-2,-2),以原点O为位似中心,相似比为2,把△EFO放大,根据位似图形的性质,即可求得点E的对应点E′的坐标.【详解】∵点E(-4,2),以原点O为位似中心,相似比为2,把△EFO放大,∴点E的对应点E′的坐标是:(-8,4)或(8,-4).故答案为:(-8,4)或(8,-4).【点睛】此题考查了位似图形的性质.此题比较简单,注意位似图形有两个.16、60【解析】
=2ab(a+b),将a+b=3,ab=10,整体带入即可.【详解】=2ab(a+b)=2×3×10=60.【点睛】本题主要考查利用提公因式法分解因式,整体带入是解决本题的关键.17、−3【解析】
设A(a,b),则ab=,分别过A,C作AE⊥x轴于E,CF⊥x轴于F,根据相似三角形的判定证得△AOE∽△COF,由相似三角形的性质得到OF=,CF=,则k=-OF•CF=-3.【详解】设A(a,b),
∴OE=a,AE=b,
∵在反比例函数y=图象上,
∴ab=,
分别过A,C作AE⊥x轴于E,CF⊥x轴于F,
∵矩形AOCB,
∴∠AOE+∠COF=90°,
∴∠OAE=∠COF=90°−∠AOE,
∴△AOE∽△OCF,
∵OC=OA,
∴===,
∴OF=AE=b,CF=OE=a,
∵C在反比例函数y=的图象上,且点C在第四象限,
∴k=−OF⋅CF=−b⋅a=−3ab=−3.【点睛】本题考查反比例函数图象上点的坐标特征和矩形的性质,解题的关键是掌握反比例函数图象上点的坐标特征和矩形的性质.18、5或【解析】
利用分类讨论的思想可知,此题有两种情况:一是当这个直角三角形的两直角边分别为、时;二是当这个直角三角形的一条直角边为,斜边为.然后利用勾股定理即可求得答案.【详解】当这个直角三角形的两直角边分别为、时,则该三角形的斜边的长为:(),当这个直角三角形的一条直角边为,斜边为时,则该三角形的另一条直角边的长为:().故答案为或.【点睛】此题主要考查学生对勾股定理的理解和掌握,注意分类讨论是解题关键.三、解答题(共78分)19、点E坐标(2,3)【解析】
过点E作AE⊥y轴于点A,过点F作FP⊥AE于点P,由“AAS”可证△AOE≌△PFE,可得AE=PF,PE=AO,即可求点E坐标.【详解】解:如图,过点E作AE⊥y轴于点A,过点F作FP⊥AE于点P,∵四边形是正方形∴EF=OE,∠FEO=90°∵∠FEP+∠PEO=90°,∠PEO+∠AOE=90°∴∠AOE=∠FEP,且EF=OE,∠EPF=∠OAE=90°∴△AOE≌△PFE(AAS)∴AE=PF,PE=AO,∵点F(-1,5)∴AO+PF=5,PE-AE=1∴AO=3=PE,AE=2=PF∴点E坐标(2,3).【点睛】本题考查了正方形的性质,全等三角形的判定和性质,坐标与图形的性质,证明△AOE≌△PFE是本题的关键.20、m的值为-1或-6或【解析】
分式方程去分母转化为整式方程,整理后根据一元一次方程无解条件求出m的值;由分式方程无解求出x的值,代入整式方程求出m的值即可.【详解】解:方程两边同时乘以(x+2)(x-1)得:整理得:当m+1=0时,该方程无解,此时m=-1;当m+1≠0时,则原方程有增根,原方程无解,∵原分式方程有增根,∴(x+2)(x-1)=0,解得:x=-2或x=1,当x=-2时,;当x=1时,m=-6∴m的值为-1或-6或【点睛】此题考查了分式方程的解,弄清分式方程无解的条件是解本题的关键.21、x+1当x=2时,原式=3【解析】
根据分式化简的方法首先将括号里面的进行通分,然后利用分式的除法法则进行计算.选择x的值时不能取1、0和-1,其他的值随便可以自己选择.【详解】解:原式===x+1当x=2时,原式=x+1=2+1=3.【点睛】本题考查分式的化简求值,注意分式的分母不能为0.22、(1)见解析;(2)15°;(3)2+2.【解析】
(1)在直角三角形ABC中,由AC=2AB,得到∠ACB=30°,再由折叠的性质得到一对角相等,利用等角对等边即可得证;
(2)由(1)得到△ABB′为等边三角形,利用矩形的性质及等边三角形的内角为60°,即可求出所求角度数;
(3)连接AF,过A作AM⊥BF,可得△AB′F是等腰直角三角形,△AB′B为等边三角形,分别利用三角函数定义求出MF与AM,根据AM=BM,即BM+MF=BF即可求出.【详解】(1)证明:∵在Rt△ABC中,AC=2AB,
∴∠ACB=∠AC′B′=30°,∠BAC=60°,
由旋转可得:AB′=AB,∠B′AC′=∠BAC=60°,
∴∠EAC′=∠AC′B′=30°,
∴AE=C′E;
(2)解:由(1)得到△ABB′为等边三角形,
∴∠AB′B=60°,即∠BB'F=∠AB'B+∠AB'F=150°,
∵BB'=B'F,
∴∠FBB′=∠B'FB=15°;
(3)解:连接AF,过A作AM⊥BF,可得△AB′F是等腰直角三角形,△AB′B为等边三角形,
∴∠AFB′=45°,∠BB′F=150°,
∵BB′=B′F,
∴∠B′FB=∠B′BF=15°,
∴∠AFM=30°,∠ABF=45°,
在Rt△AMF中,AM=BM=AB•cos∠ABM=2=2,
在Rt△AMF中,MF=AM=2,
则BF=2+2.【点睛】此题参考四边形综合题,旋转的性质,矩形的性质,锐角三角函数定义,等边三角形、直角三角形的性质,熟练掌握旋转的性质是解题的关键.23、(1)45°;(2)证明见解析;(3).【解析】
(1)∵正方形ABCD,AG⊥EF,∴AG=AB,∠ABE=∠AGE=∠BAD=90°,AE=AE,∴Rt△ABE≌Rt△AGE,∴∠BAE=∠GAE,同理Rt△ADF≌Rt△AGF,∴∠GAF=∠DAF,∴∠EAF=∠BAD=45°;(2)证明:由旋转知,∠BAH=∠DAN,AH=AN,∵∠BAD=90°,∠EAF=45°,∴∠BAM+∠DAN=45°,∴∠HAM=∠BAM+∠BAH=∠BAM+∠DAN=45°,∴∠HAM=∠NAM,AM=AM,∴△AHM≌△ANM,∴MN=MH,∵四边形ABCD是正方形,∴∠ADB=∠ABD=45°由旋转知,∠ABH=∠ADB=45°,HB=ND,∴∠HBM=∠ABH+∠ABD=90°,∴,∴;(3).以下解法供参考∵,∴;在(2)中,设,则.∴.即.24、(1)证明见解析(2)∠E=2∠BDE【解析】
(1)由四边形ABCD是平行四边形,EC=BC,易证得四边形ACED是平行四边形,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO 22932-7:2025 EN Mining - Vocabulary - Part 7: Ventilation
- 2025至2030中国男士衬衫行业发展分析及竞争格局与发展趋势预测报告
- 2025至2030中国电子汽缸锁凭证行业产业运行态势及投资规划深度研究报告
- 2025至2030中国田园综合体行业发展规模及前景规划研究报告
- 2025至2030中国现代化养猪场行业市场发展分析及发展前景策略与投资报告
- 2025至2030中国物联网云平台行业发展趋势分析与未来投资战略咨询研究报告
- 《护理交接班制度》考试试题(附答案)
- 学生情绪管理教育心理学的实践
- 教育App在家庭学习场景的创新
- 班干部培训总结
- GB/T 2881-2023工业硅
- 2-2点亮小灯泡课件公开课
- 肠道微生态与人体健康
- QC小组成果汇报 适用于总结计划 成果汇报 简约大气PPT模板
- 当代蒙古国外交政策研究
- 博爱县源森商贸有限公司年加工2000吨低电阻残阳极料项目环境影响报告表
- 《义务教育地理新课程标准》(2022年版)新课标初中地理解读与梳理教学课件
- 中药学电子版教材
- 第五版-FMEA-新版FMEA【第五版】
- 退役军人事务系统公考综合基础知识考试能力测试(含答案)
- LS/T 3244-2015全麦粉
评论
0/150
提交评论