版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届上海市杨浦区上海同济大附属存志学校数学八年级下册期末联考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.“分数”与“分式”有许多共同点,我们在学习“分式”时,常常对比“分数”的相关知识进行学习,这体现的数学思想方法是()A.分类 B.类比 C.方程 D.数形结合2.下列各组数是勾股数的是()A.2,3,4B.4,5,6C.3.6,4.8,6D.9,40,413.为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表,关于这10户家庭的月用电量说法正确的是()月用电量(度)2530405060户数12421A.极差是3 B.众数是4 C.中位数40 D.平均数是20.54.当x<a<0时,与ax的大小关系是().A.>ax B.≥ax C.<ax D.≤ax5.与-3A.6 B.-9 C.12 D.6.已知正比例函数的图象如图所示,则一次函数y=mx+n图象大致是()A. B.C. D.7.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=1.则图中阴影部分的面积为()A.10 B.12 C.16 D.118.若一个正多边形的每一个外角都等于40°,则它是().A.正九边形 B.正十边形 C.正十一边形 D.正十二边形9.如图,在中,,,点D是AB的中点,则A.4 B.5 C.6 D.810.如图,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连接AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③四边形ABCD是平行四边形;④图中共有四对全等三角形.其中正确结论的个数是A.4B.3C.2D.111.如图,在△ABC中,AB=3,AC=4,BC=1,△ABD,△ACE,△BCF都是等边三角形,下列结论中:①AB⊥AC;②四边形AEFD是平行四边形;③∠DFE=110°;④S四边形AEFD=1.正确的个数是()A.1个 B.2个C.3个 D.4个12.如图,已知直线经过二,一,四象限,且与两坐标轴交于A,B两点,若,是该直线上不重合的两点.则下列结论:①;②的面积为;③当时,;④.其中正确结论的序号是()A.①②③ B.②③ C.②④ D.②③④二、填空题(每题4分,共24分)13.在正方形ABCD中,E在BC上,BE=2,CE=1,P是BD上的动点,则PE+PC的最小值是_____________.14.如图,矩形的边分别在轴、轴上,点的坐标为。点分别在边上,。沿直线将翻折,点落在点处。则点的坐标为__________。15.如图,在正方形ABCD的外侧作等边△DEC,则∠AEB=_________度.16.定义运算“★”:对于任意实数,都有,如:.若,则实数的值是_____.17.点P(a,b)在第三象限,则直线y=ax+b不经过第_____象限18.将直线y=2x+3向下平移2个单位,得直线_____.三、解答题(共78分)19.(8分)如图,矩形ABCD的对角线AC、BD交于点O,且DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED的面积.20.(8分)为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.21.(8分)如图,在中,,cm,cm,在中,,cm,cm.EF在BC上,保持不动,并将以1cm/s的速度向点C运动,移动开始前点F与点B重合,当点E与点C重合时,停止移动.边DE与AB相交于点G,连接FG,设移动时间为t(s).(1)从移动开始到停止,所用时间为________s;(2)当DE平分AB时,求t的值;(3)当为等腰三角形时,求t的值.22.(10分)某学校为了加强训练学生的篮球和足球运球技能,准备购买一批篮球和足球用于训练,已知1个篮球和2个足球共需116元;2个篮球和3个足球共需204元求购买1个篮球和1个足球各需多少元?若学校准备购进篮球和足球共40个,并且总费用不超过1800元,则篮球最多可购买多少个?23.(10分)先化简再求值:(x+y)2﹣x(x+y),其中x=2,y=﹣1.24.(10分)在学校组织的“学习强国”知识竞赛中,每班参加比赛的人数相同,成绩分为,,,四个等级其中相应等级的得分依次记为分,分,分和分.年级组长张老师将班和班的成绩进行整理并绘制成如下的统计图:(1)在本次竞赛中,班级的人数有多少。(2)请你将下面的表格补充完整:成绩班级平均数(分)中位数(分)众数(分)B级及以上人数班班(3)结合以上统计量,请你从不同角度对这次竞赛成绩的结果进行分析(写出两条)25.(12分)如图,在▱ABCD中,BC=2AB,点E、F分别是BC、AD的中点,AE、BF交于点O,连接EF,OC.(1)求证:四边形ABEF是菱形;(2)若AB=4,∠ABC=60°,求OC的长.26.图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形.(2)若DE=4cm,∠EBC=60°,求菱形BCFE的面积。
参考答案一、选择题(每题4分,共48分)1、B【解析】
根据分式和分数的基本性质,成立的条件等相关知识,分析求解.【详解】“分数”与“分式”有许多共同点,我们在学习“分式”时,常常对比“分数”的相关知识进行学习,比如分数的基本性质,分数成立的条件等,这体现的数学思想方法是类比故选:B【点睛】本题的解题关键是掌握分数和分式的基本性质和概念.2、D【解析】利用勾股数的定义进行判断.A选项,42≠22+32,故2,3,4不是勾股数;B选项,62≠42+52,故4,5,6不是勾股数;C选项,3.6,4.8不是正整数,故不是勾股数;D选项,三数均为正整数,且412=92+402,故9,40,41是勾股数.故选D.3、C【解析】
极差、中位数、众数、平均数的定义和计算公式分别对每一项进行分析,即可得出答案.【详解】解:A、这组数据的极差是:60-25=35,故本选项错误;
B、40出现的次数最多,出现了4次,则众数是40,故本选项错误;
C、把这些数从小到大排列,最中间两个数的平均数是(40+40)÷2=40,则中位数是40,故本选项正确;
D、这组数据的平均数(25+30×2+40×4+50×2+60)÷10=40.5,故本选项错误;
故选:C.【点睛】本题考查了极差、平均数、中位数、众数的知识,解答本题的关键是掌握各知识点的概念.4、A【解析】根据不等式的基本性质3,不等式的两边同乘以一个负数,不等号的方向改变,可得x2>ax.故选A.5、C【解析】
先对各个选项中的二次根式化简为最简二次根式(被开方数中不含分母且被开方数中不含有开得尽方的因数或因式),再在其中找-3的同类二次根式(化成最简二次根式后的被开方数相同,这样的二次根式叫做同类二次根式.)【详解】A.6为最简二次根式,且与-3B.-9=-3,与-C.12=23,与D.-15为最简二次根式,且与-3故选C.【点睛】本题考查二次根式的加减,能将各个选项中根式化简为最简二次根式,并能找对同类二次根式是本题的关键.6、C【解析】
利用正比例函数的性质得出>0,根据m、n同正,同负进行判断即可.【详解】.解:由正比例函数图象可得:>0,mn同正时,y=mx+n经过一、二、三象限;mn同负时,过二、三、四象限,故选C.【点睛】本题考查了正比例函数的性质,熟练掌握正比例函数的性质是解题的关键.7、C【解析】
首先根据矩形的特点,可以得到S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN,最终得到S矩形EBNP=S矩形MPFD,即可得S△PEB=S△PFD,从而得到阴影的面积.【详解】作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN∴S矩形EBNP=S矩形MPFD,又∵S△PBE=S矩形EBNP,S△PFD=S矩形MPFD,∴S△DFP=S△PBE=×2×1=1,∴S阴=1+1=16,故选C.【点睛】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.8、A【解析】
根据多边形的外角和是360度即可求得外角的个数,即多边形的边数.【详解】解:∵360÷40=1,
∴这个正多边形的边数是1.
故选:A.【点睛】本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.9、B【解析】
根据直角三角形中,斜边上的中线等于斜边的一半解答即可.【详解】,点D为AB的中点,.故选:B.【点睛】本题考查直角三角形的性质,掌握在直角三角形中斜边上的中线等于斜边的一半是解题的关键.10、B【解析】试题分析:∵DE=BF,∴DF=BE。∵在Rt△DCF和Rt△BAE中,CD=AB,DF=BE,∴Rt△DCF≌Rt△BAE(HL)。∴FC=EA。故①正确。∵AE⊥BD于点E,CF⊥BD于点F,∴AE∥FC。∵FC=EA,∴四边形CFAE是平行四边形。∴EO=FO。故②正确。∵Rt△DCF≌Rt△BAE,∴∠CDF=∠ABE。∴CD∥AB。∵CD=AB,∴四边形ABCD是平行四边形。故③正确。由上可得:△CDF≌△BAE,△CDO≌△BAO,△CDE≌△BAF,△CFO≌△AEO,△CEO≌△AFO,△ADF≌△CBE等。故④图中共有6对全等三角形错误。故正确的有3个。故选B。11、C【解析】
由,得出∠BAC=90°,则①正确;由等边三角形的性质得∠DAB=∠EAC=60°,则∠DAE=110°,由SAS证得△ABC≌△DBF,得AC=DF=AE=4,同理△ABC≌△EFC(SAS),得AB=EF=AD=3,得出四边形AEFD是平行四边形,则②正确;由平行四边形的性质得∠DFE=∠DAE=110°,则③正确;∠FDA=180°-∠DFE=30°,过点作于点,,则④不正确;即可得出结果.【详解】解:∵,∴,∴∠BAC=90°,∴AB⊥AC,故①正确;∵△ABD,△ACE都是等边三角形,∴∠DAB=∠EAC=60°,又∴∠BAC=90°,∴∠DAE=110°,∵△ABD和△FBC都是等边三角形,∴BD=BA,BF=BC,∠DBF+∠FBA=∠ABC+∠ABF=60°,∴∠DBF=∠ABC,在△ABC与△DBF中,,∴△ABC≌△DBF(SAS),∴AC=DF=AE=4,同理可证:△ABC≌△EFC(SAS),∴AB=EF=AD=3,∴四边形AEFD是平行四边形,故②正确;∴∠DFE=∠DAE=110°,故③正确;∴∠FDA=180°-∠DFE=180°-110°=30°,过点作于点,∴,故④不正确;∴正确的个数是3个,故选:C.【点睛】本题考查了平行四边形的判定与性质、勾股定理的逆定理、全等三角形的判定与性质、等边三角形的性质、平角、周角、平行是四边形面积的计算等知识;熟练掌握平行四边形的判定与性质是解题的关键.12、B【解析】
根据直线经过的象限即可判定①结论错误;求出点A、B坐标,即可求出的面积,可判定②结论正确;直接观察图像,即可判定③结论正确;将两点坐标代入,进行消元,即可判定④结论错误.【详解】∵直线经过二,一,四象限,∴∴,①结论错误;点A,B∴OA=,OB=,②结论正确;直接观察图像,当时,,③结论正确;将,代入直线解析式,得∴,④结论错误;故答案为B.【点睛】此题主要考查一次函数的图像和性质,熟练掌握,即可解题.二、填空题(每题4分,共24分)13、13【解析】
根据题意画出图形,连接AC、AE,由正方形的性质可知A、C关于直线BD对称,故AE的长即为PE+PC的最小值,再根据勾股定理求出AE的长即可.【详解】如图所示:连接AC、AE,∵四边形ABCD是正方形,∴A、C关于直线BD对称,∴AE的长即为PE+PC的最小值,∵BE=2,CE=1,∴BC=AB=2+1=3,在Rt△ABE中,∵AE=AB∴PE与PC的和的最小值为13.故答案为:13.【点睛】本题考查的是轴对称-最短路线问题及正方形的性质,熟知“两点之间,线段最短”是解决问题的关键.14、【解析】
由四边形OABC是矩形,BE=BD=1,易得△BED是等腰直角三角形,由折叠的性质,易得∠BEB′=∠BDB′=90°,又由点B的坐标为(3,2),即可求得点B′的坐标.【详解】∵四边形OABC是矩形,∴∠B=90°,∵BD=BE=1,∴∠BED=∠BDE=45°,∵沿直线DE将△BDE翻折,点B落在点B′处,∴∠B′ED=∠BED=45°,∠B′DE=∠BDE=45°,B′E=BE=1,B′D=BD=1,∴∠BEB′=∠BDB′=90°,∵点B的坐标为(3,2),∴点B′的坐标为(2,1).故答案为:(2,1).【点睛】此题考查翻折变换(折叠问题),坐标与图形性质,解题关键在于得到△BED是等腰直角三角形15、1【解析】
根据正方形和等边三角形的性质证明△ADE是等腰三角形,由此可以求出∠DEA,同理求出∠CEB即可解决问题.【详解】解:∵四边形ABCD是正方形,∴∠ADC=90°,CD=AD,∵△DCE是正三角形,∴DE=DC=AD,∠CDE=∠DEC=60°,∴△ADE是等腰三角形,∠ADE=90°+60°=150°,∴∠DAE=∠DEA==15°,同理可得:∠CBE=∠CEB=15°,∴∠AEB=∠DEC―∠DEA―∠CEB=60°-15°-15°=1°,故答案为:1.【点睛】此题主要考查了正方形和等边三角形的性质、等腰三角形的判定和性质以及三角形的内角和定理,灵活运用相关性质定理是解题的关键.16、3或﹣1.【解析】
根据新定义运算法则得到关于x的方程,通过解方程来求x的值.【详解】解:依题意得:(x﹣1)2+3=7,整理,得(x﹣1)2=4,直接开平方,得x﹣1=±2,解得x1=3,x2=﹣1.故答案是:3或﹣1.【点睛】本题主要考查了直接开平方法解一元二次方程的知识,解答本题的关键是掌握新定义a★b=a2+b,此题难度不大.17、一【解析】
点在第三象限的条件是:横坐标为负数,纵坐标为负数.进而判断相应的直线经过的象限【详解】解:∵点P(a,b)在第三象限,∴a<0,b<0,∴直线y=ax+b经过第二、三、四象限,不经过第一象限,故答案为:一.【点睛】此题主要考查四个象限的点坐标特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.掌握直线经过象限的特征即可求解18、y=2x+1.【解析】根据“左加右减,上加下减”的平移规律可得:将直线y=-2x+3先向下平移3个单位,得到直线y=-2x+3-2,即y=-2x+1.故答案是:y=﹣2x+1.三、解答题(共78分)19、(1)证明见解析;(1).【解析】
(1)由平行四边形的判定得出四边形OCED是平行四边形,根据矩形的性质求出OC=OD,根据菱形的判定得出即可.(1)解直角三角形求出BC=1.AB=DC=1,连接OE,交CD于点F,根据菱形的性质得出F为CD中点,求出OF=BC=1,求出OE=1OF=1,求出菱形的面积即可.【详解】证明:,,四边形OCED是平行四边形,矩形ABCD,,,,,四边形OCED是菱形;在矩形ABCD中,,,,,,连接OE,交CD于点F,四边形OCED为菱形,为CD中点,为BD中点,,,.【点睛】本题主要考查了矩形的性质和菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:菱形的面积等于对角线积的一半.20、(1)20%;(2)10368万元.【解析】试题分析:(1)首先设该县投入教育经费的年平均增长率为x,然后根据增长率的一般公式列出一元二次方程,然后求出方程的解得出答案;(2)根据增长率得出2017年的教育经费.试题解析:(1)设该县投入教育经费的年平均增长率为x.则有:6000=8640解得:=0.2=-2.2(舍去)所以该县投入教育经费的年平均增长率为20%(2)因为2016年该县投入教育经费为8640万元,且增长率为20%所以2017年该县投入教育经费为8640×(1+20%)=10368(万元)考点:一元二次方程的应用21、(1)6;(2);(3)t=,4,6【解析】
(1)直接用行程问题的数量关系计算可得;(2)连接AE,证明DE是AB的垂直平分线,然后Rt中,由勾股定理得:即,解方程即可得出t的值;(3)分三种情况讨论等腰三角形的情况,利用平行线分线段成比例定理和勾股定理可得列出方程,求出HG的值并进一步得到BF的值,从而得出t的值。【详解】解:(1)如图1∵BC=12cm,EF=6cm,∴EC=12-6=6cm,6÷1=6s∴从移动开始到停止,所用时间为6s;故答案为:6(2)如图2,连接AE∵EF:DF=AC:BC=3:4,∴∽,∴∠D=∠B∴DG⊥AB,∵DG平分AB,∴AE=BE=t+6CE=6-t在Rt中,由勾股定理得:即解得t=s(3)如图3,连接GF,过点G作GH⊥BC于点H,由勾股定理得ED=10为等腰三角形,分三种情况讨论:①当EF=EG=6时,∵,即解得GH=4.8由勾股定理得EH=3.6∵,即解得BH=6.4∴BE=6.4+3.6=10∴BF=10-6=4∴t=4②当GF=EF=6时,过点F作FM⊥GE于点M,设ME=3x,则MF=4x,由勾股定理得:解得x=1.2∴GE=6x=7.2,设EH=3y,则GH=4y,,由勾股定理得:解得:y=1.44∴EH=4.32,则GH=5.76解得BH=7.68则BE=7.68+4.32=12BF=12-6=6∴t=6③当GE=GF时,EH=FH=3,则GH=4解得BH=则BF=BH-FH=∴t=综上所述,当t=,4,6时,为等腰三角形。【点睛】本题考查了相似三角形、平行线分线段成比例定理、解直角三角形、等腰三角形等知识,综合性强,要仔细答题。22、(1)购买一个篮球需60元,购买一个足球需28元;(2)篮球最多可购买21个.【解析】
(1)设购买一个篮球元,购买一个足球元,根据“1个篮球和2个足球共需116元,2个篮球和3个足球共需204元”,即可得出关于、的二元一次方程组,解之即可得出结论;(2)设购买个篮球,则购买的足球数为,根据费用=单价×数量,分别求出篮球和足球的费用,二者相加便是总费用,总费用不超过1800元,列出关于的一元一次不等式,解之即可得出结论.【详解】解:设购买一个篮球的需x元,购买一个足球的需
y元,依题意得,解得,答:购买一个篮球需60元,购买一个足球需28元;设购买m个篮球,则足球数为,依题意得:,解得:,而m为正整数,,答:篮球最多可购买21个.【点睛】本题考查了二元一次方程组的应用及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量关系,正确列出一元一次不等式.23、2.【解析】
根据整式乘法法则将式子化简,再代入求值,要注意二次根式的运算法则的应用.【详解】解:原式=2【点睛】本题考核知识点:二次根式化简求值.解题关键点:掌握乘法公式.24、(1)9人;(2)见解析;(3)略.【解析】
(1)根据一班的成绩统计可知一共有25人,因为每班参加比赛的人数相同,用总人数乘以C级以上的百分比即可得出答案,(2)根据平均数、众数、中位数的概念,结合一共有25人,即可得出答案.(3)分别从级及以上人数和众数的角度分析那个班成绩最好即可.【详解】解:(1)班有人,人.所以班C级人数有9人(2)请你将下面的表格补充完整:平均数(分)中位数(分)众数(分)级及以上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业社会责任国际认证申请服务行业市场调研分析报告
- 装配用钳项目运营指导方案
- 反射疗法服务行业经营分析报告
- 商标监控法律服务行业相关项目经营管理报告
- 度假屋出租行业营销策略方案
- 公共汽车包租行业经营分析报告
- 婴儿车专用包产品供应链分析
- 复印机产业链招商引资的调研报告
- 手持纸带喷射器产业链招商引资的调研报告
- 互惠基金经纪行业相关项目经营管理报告
- 部编版道德与法治五年级上册第三单元《我们的国土 我们的家园》大单元作业设计
- 守株待兔儿童故事绘本PPT
- 人教版部编版二上11葡萄沟1
- 贯彻落实八项规定实施细则实施办法
- 2022年小学美术新课程标准考试模拟试题及部分答案(共五套)
- 行车组织-课件-7.1行车安全概述.培训讲学
- YY 0600.3-2007医用呼吸机基本安全和主要性能专用要求第3部分:急救和转运用呼吸机
- GB/T 19266-2008地理标志产品五常大米
- GB/T 1239.2-2009冷卷圆柱螺旋弹簧技术条件第2部分:压缩弹簧
- GB 5948-1998摩托车白炽丝光源前照灯配光性能
- 卫生保洁考核办法
评论
0/150
提交评论